[1]
D. Bradley, The Hydrocyclone, first ed., Pergamon, London, U.K., 1965, p.1–10.
Google Scholar
[2]
K. Heiskanen, Particle Classification, first ed., Chapman & Hall, London, 1993, p.159–162.
Google Scholar
[3]
K. Saengchan, A. Nopharatana, W. Songkasiri, Enhancement of tapioca starch separation with a hydrocyclone: effects of apex diameter, feed concentration, and pressure drop on tapioca starch separation with a hydrocyclone, Chem. Eng. Process. 48 (2009) 195–202.
DOI: 10.1016/j.cep.2008.03.014
Google Scholar
[4]
L. Svarovsky, Solid–Liquid Separation, fourth ed., Butterworth-Heinemann, Holt, Rinehart & Winston, London, Oxford, 2000, p.193.
Google Scholar
[5]
N.K.G. Silva, D.O. Silva, L.G.M. Vieira, M.A.S. Barrozo, Effects of underflow diameter and vortex finder length on the performance of a newly designed filtering hydrocyclone, Powder Technol. 286 (2015) 305–310.
DOI: 10.1016/j.powtec.2015.08.036
Google Scholar
[6]
L.Y. Chu, W.M. Chen, X.Z. Lee, Effect of structural modification on hydrocyclone performance, Sep. Purif. Technol. 21 (2000) 71–86.
Google Scholar
[7]
L.Y. Chu, W. Yu, G.J. Wang, X.T. Zhou, W.M. Chen, G.Q. Dai, Enhancement of hydrocyclone separation performance, Chem. Eng. Process. 43 (2004) 1441–1448.
DOI: 10.1016/j.cep.2004.01.002
Google Scholar
[8]
M. Ghodrat, S.B. Kuang, A.B. Yu, A. Vince, G.D. Barnett, P.J. Barnett, Numerical analysis of hydrocyclones with different conical section, Miner. Eng. 62 (2014) 74–84.
DOI: 10.1016/j.mineng.2013.12.003
Google Scholar
[9]
G. Patra, B. Velpuri, S. Chakraborty, B.C. Meikap, Performance evaluation of a hydrocyclone with a spiral rib for separation of particles, Adv. Powder Technol. 28 (2017) 3222–3232.
DOI: 10.1016/j.apt.2017.10.002
Google Scholar
[10]
V.R. Teja, K.R. Veera Bhadra, A. Rakesh, M. Narasimha, Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model, Sep. Purif. Technol. 175 (2017) 481–497.
DOI: 10.1016/j.seppur.2016.10.026
Google Scholar
[11]
L.Y. Chu, Q. Luo, Hydrocyclone with high separation sharpness, Filtr. & Sep. 31 (1994) 733–736.
Google Scholar
[12]
P. Wongsarivej, W. Tanthapanichakoon, H. Yoshida, K. Fukui, Classification of silica fine particles using a novel electric hydrocyclone, Sci. Technol. Adv. Mater. 6 (2005) 364–369.
Google Scholar
[13]
B. Chiné, F. Concha, Flow patterns in conical and cylindrical hydrocyclones, Chem. Eng. J. 80 (2000) 267–273.
DOI: 10.1016/s1383-5866(00)00101-5
Google Scholar
[14]
Y.H. Zhang, P. Qian, Y. Liu, H.L. Wang, Experimental study of hydrocyclone flow field with different feed concentration, Ind. Eng. Chem. Res., 50 (13) (2011) 8176–8184.
DOI: 10.1021/ie100210c
Google Scholar
[15]
B. Tang, Y. Xu, X. Song, Z. Sun, J. Yu, Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design, Chem. Eng. J. 278 (2015) 504–516.
DOI: 10.1016/j.cej.2014.11.022
Google Scholar
[16]
R. Xiang, S.H. Park, K.W. Lee, Effects of cone dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549–561.
DOI: 10.1016/s0021-8502(00)00094-x
Google Scholar