Influence of Sintering Temperature on Physical and Mechanical Properties of Hydroxyapatite-Calcium Titanate Composite

Article Preview

Abstract:

This research is concerned with the effect of sintering temperature on physical and mechanical properties. This Hydroxyapatite-calcium titanate (HA-CT) composites were synthesized using conventional route technique. The HA-CT composites were sintered between 1200 up to 1300 °C. The effect of sintering temperature on the physical and mechanical properties of HA-CT composites was discussed. The physical properties were studied in term of densification and apparent porosity. As well as, the mechanical properties were determined in term of Vickers microhardness. The increasing of the sintering temperature increased both of the bulk density and the Vickers microhardness properties. However, the apparent porosity was decreased with increasing sintering temperature. The highest bulk density was found at 0.15 mol.% of CT in HA-CT composites which was sintered at 1300 °C for 3 h. Moreover, the mechanical properties as a function of the sintering temperature and the CT contents were also discussed and compared with other related work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Cao, L. L. Hench, Bioactive materials, Ceram. Int. 22 (1996) 493-507.

Google Scholar

[2] V. V. Silva, F. S. Lameiras, R. Z. Domingues, Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications, Compos. Sci. Technol. 61 (2001) 301-310.

DOI: 10.1016/s0266-3538(00)00222-0

Google Scholar

[3] S. Ramesh, C. Y. Tan, W. H. Yeo, R. Tolouei, M. Amiriyan, I. Sopyan, W. D. Teng, Effects of bismuth oxide on the sinterability of hydroxyapatite, Ceram. Int. 37 (2011) 599-606.

DOI: 10.1016/j.ceramint.2010.09.041

Google Scholar

[4] J. P. Gittings, C. R. Bowen, I. G. Turner, F. Baxter, J. Chaudhuri, Characterisation of ferroelectric-calcium phosphate composites and ceramics, J. Eur. Ceram. Soc. 27 (2007) 4187-4190.

DOI: 10.1016/j.jeurceramsoc.2007.02.120

Google Scholar

[5] A. K. Dubey, G. Tripathi, B. Basu, Characterization of hydroxyapatite-perovskite (CaTiO3) composites: Phase evaluation and cellular response, J. Biomed. Mater. Res. B. 95 (2010) 320-329.

DOI: 10.1002/jbm.b.31716

Google Scholar

[6] K. Ravikumar, P. K. Mallik, B. Basu, Twinning induced enhancement of fracture toughness in ultrafine grained Hydroxyapatite-Calcium Titanate composites, J. Eur. Ceram. Soc. 36 (2016) 805-815.

DOI: 10.1016/j.jeurceramsoc.2015.10.044

Google Scholar

[7] E. A. Olevsky, Theory of sintering: from discrete to continuum. Mater. Sci. Eng. R. 23 (1998) 41-100.

Google Scholar

[8] W. Liang, D. Xiao, W. Wu, X. Li, Y. Sun, J. Zhu, Effect of sintering temperature on phase transitions, properties and temperature stability of (K0.465Na0.465Li0. 07)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 11 (2011) S138-S142.

DOI: 10.1016/j.cap.2011.03.040

Google Scholar

[9] C. Kruea-In, W. Udsah, S. Eitssayeam, K. Pengpat, G. Rujijanagul, Influence of processing temperature on properties of Sr(Fe0.5Nb0.5)O3 high dielectric ceramics. Ferroelectric. 456 (2013) 128-133.

DOI: 10.1080/00150193.2013.846709

Google Scholar

[10] S. Inthong, T. Tunkasiri, S. Eitssayeam, K. Pengpat, G. Rujijanagul,‏ Physical properties and bioactivity of nanocrystalline hydroxyapatite synthesized by a co-precipitation route, Ceram. Int. 39 (2013) S533-S536.

DOI: 10.1016/j.ceramint.2012.10.129

Google Scholar

[11] C. Kruea-In, T. Monmakhan, G. Rujijanagul, Electrical and physical properties of modified potassium sodium niobate ceramics prepared by molten salt synthesis, Ferroelectrics. 452 (2013) 69-75.

DOI: 10.1080/00150193.2013.841510

Google Scholar

[12] A. Niakan, S. Ramesh, P. Ganesan, C. Y. Tan, J. Purbolaksono, H. Chandran, S. Ramesh, W. D. Teng, Sintering behaviour of natural porous hydroxyapatite derived from bovine bone, Ceram. Int. 41 (2015) 3024-3029.

DOI: 10.1016/j.ceramint.2014.10.138

Google Scholar

[13] G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceram. Int. 26 (2000) 221-230.

DOI: 10.1016/s0272-8842(99)00046-2

Google Scholar

[14] S. Ramesh, K. L. Aw, R. Tolouei, M. Amiriyan, C. Y. Tan, M. Hamdi, J. Purbolaksono, M. A. Hassn, W. D. Teng, Sintering properties of hydroxyapatite powders prepared using different methods, Ceram. Int. 39 (2013) 111-119.

DOI: 10.1016/j.ceramint.2012.05.103

Google Scholar

[15] R. M German, Sintering theory and practice, John Wiley & Sons, New York, 1996, ISBN 047105786.

Google Scholar