Quantum-Mechanical Simulation of the Defects Influence on the Shear Rupture in γ-TiAl

Article Preview

Abstract:

The effect of point defects on the shear rupture resistance in titanium aluminide is investigated by the density functional theory and pseudopotential methods. Vacancies, as well as substitution atoms – tungsten and chromium were considered as points defects. The shear was simulated in the(111) slip plane for two directions, namely [110] and [11-2]. It is shown that for a {111}<110> sliding system, vacancies significantly reduce the shear resistance. However, when alloying element occupies a titanium vacancy, it can partially compensate for this negative effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-135

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.A. Loria. Gamma titanium aluminides as prospective structural materials, Intermetallics. 8 (2000) 1339-1345.

DOI: 10.1016/s0966-9795(00)00073-x

Google Scholar

[2] H. Clemens, H. Kestler. Processing and applications of intermetallic γ-TiAl-based alloys, Advanced Engineering Materials. 2 (2000) 551-570.

DOI: 10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u

Google Scholar

[3] Titanium and Titanium Alloys: Fundamentals and Applications. Edited by C. Leyens, M. Peters. Wiley, (2003).

Google Scholar

[4] X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, G.L. Chen. Microstructural control of TiAl-Nb alloys by directional solidification, Acta Materialia. 60 (2012) 498-506.

DOI: 10.1016/j.actamat.2011.10.009

Google Scholar

[5] P. J. Maziasz, R. V. Ramanujan, C. T. Liu, J. L. Wright. Effects of B and W Alloying Additions on the Formation and Stability of Lamellar Structures in Two Phase γ-TiAl, Intermetallics. 5 (1997) 83-95.

DOI: 10.1016/s0966-9795(96)00070-2

Google Scholar

[6] D. J. Larson, C. T. Liu, M. K. Miller. Tungsten segregation in α2+γ titanium aluminides, Intermetallics. 5 (1997) 497-500.

DOI: 10.1016/s0966-9795(97)00026-5

Google Scholar

[7] K. Hashimoto, H. Hirata, Y. Mizuhara. Phase Stability and High Temperature Tensile Properties of W doped gamma-TiAl, Mat. Res. Soc. Symp. Proc. 646 (2011) N7.8.1.-N7.8.6.

DOI: 10.1557/proc-646-n7.8.1

Google Scholar

[8] Y. Zheng, L. Zhao, K. Tangri, Microstructure evolution during heat treatment of a Cr-bearing Ti3Al+TiAl alloy, Scr. Metall. Mater. 26 (1992) 219-224.

DOI: 10.1016/0956-716x(92)90176-f

Google Scholar

[9] E. Hamzah, M. Kanniah, M. Harun, Effect of chromium addition on microstructure, tensile properties and creep resistance of as-cast Ti-48Al alloy, J. Mater. Sci. 42 (2007) 9063-9069.

DOI: 10.1007/s10853-007-1692-9

Google Scholar

[10] F. Appel, D. Herrmann, F.D. Fischer, J. Svoboda, E. Kozeschnik. Role of vacancies in work hardening and fatigue of TiAl alloys, International Journal of Plasticity, 42 (2013) 83-100.

DOI: 10.1016/j.ijplas.2012.10.001

Google Scholar

[11] F. Ruicheng, C. Hui, L. Haiyan, R. Zhiyuan, Y. Changfeng. Effects of Vacancy Concentration and Temperature on Mechanical Properties of Single-Crystal γ-TiAl Based on Molecular Dynamics Simulation, High Temp. Mater. Proc. 37 (2018) 113-120.

DOI: 10.1515/htmp-2016-0156

Google Scholar

[12] X. Gonzea, B. Amadond, P.-M. Angladee, J.-M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D.R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M.J.T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G.- M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M.J. Verstraetea, G. Zerahd and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Computer Phys. Comm. 180 (2009) 2582-2615.

Google Scholar

[13] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of polyatomic systems using density functional theory, Comp. Phys. Commun. 119 (1999) 32-67.

DOI: 10.1016/s0010-4655(98)00201-x

Google Scholar

[14] A. Gnidenko. Computer Simulation of Plastic Deformation in TiAl Alloys in the Presence of Chromium, Defect and Diffusion Forum. 386 (2018) 383-387.

DOI: 10.4028/www.scientific.net/ddf.386.383

Google Scholar

[15] Y. Song, Z. X. Guo, R. Yang. First principles studies of TiAl-based alloys, J. Light Met. 2 (2002) 115-123.

Google Scholar

[16] C. Jiang. First-principles study of site occupancy of dilute 3d, 4d and 5d transition metal solutes in L10 TiAl, Acta Materialia. 56 (2008) 6224-6231.

DOI: 10.1016/j.actamat.2008.08.047

Google Scholar

[17] Shared Facility Center Data Center of FEB RAS, (Khabarovsk), http://lits.ccfebras.ru.

Google Scholar