Thermodynamic Properties of Heisenberg Spin Systems

Article Preview

Abstract:

We present the simulation results of magnetic 2D and 3D structures with direct (for both of them) and Dzyaloshinskii-Moriya (DMI) (for 2D lattice) interactions in the frame of the Heisenberg model. We have adapted the multipath Metropolis algorithm for systems with complex types of exchange interactions and rough energy landscapes. We show the temperature behavior of magnetization, energy, and heat capacity, and reveal its critical temperatures and order parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-154

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Dzyaloshinsky, A thermodynamic theory of weak, ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids 4 (4) (1958) 241-255.

DOI: 10.1016/0022-3697(58)90076-3

Google Scholar

[2] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review 120 (1) (1960) 91.

DOI: 10.1103/physrev.120.91

Google Scholar

[3] P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115 (1959) 2-13.

Google Scholar

[4] S. Do Yi, S. Onoda, N. Nagaosa, J. H. Han, Skyrmions and anomalous hall effect in a dzyaloshinskii-moriya spiral magnet, Physical Review B 80 (5) (2009) 054416.

DOI: 10.1103/physrevb.80.054416

Google Scholar

[5] A. Belemuk, S. Stishov, Phase transitions in chiral magnets from monte carlo simulations, Physical Review B 95 (22) (2017) 224433.

DOI: 10.1103/physrevb.95.224433

Google Scholar

[6] D. P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge university press, (2014).

Google Scholar

[7] V. Y. Kapitan, K. Nefedev, Labyrinth domain structure in the models with long-range interaction, Journal of Nano- and Electronic Physics 6 (3) (2014) 03005-1.

Google Scholar

[8] P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, N. I. Piskunova, Dimensionality crossover in critical behaviour of ultrathin ferromagnetic films, Journal of Magnetism and Magnetic Materials 387 (2015) 77-82.

DOI: 10.1016/j.jmmm.2015.03.075

Google Scholar

[9] P. S. Rakić, S. M. Radošević, P. M. Mali, L. M. Stričević, T. D. Petrić, Multipath metropolis simulation: An application to the classical heisenberg model, Physica A: Statistical Mechanics and its Applications 441 (2016) 69-80.

DOI: 10.1016/j.physa.2015.08.038

Google Scholar

[10] G. Brown, T. C. Schulthess, Wang-landau estimation of magnetic properties for the heisenberg model, Journal of applied physics 97 (10) (2005) 477.

DOI: 10.1063/1.1847311

Google Scholar

[11] K. Chen, A. M. Ferrenberg, D. Landau, Static critical behavior of three-dimensional classical heisenberg models: A high-resolution monte carlo study, Physical Review B 48 (5) (1993) 3249.

DOI: 10.1103/physrevb.48.3249

Google Scholar

[12] R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics, Nature Reviews Materials 1 (7) (2016) 16044.

DOI: 10.1038/natrevmats.2016.44

Google Scholar