First Data on the Differences of Phytolite Composition in Different Wheat Varieties Triticum aestivum L.

Article Preview

Abstract:

At current work we present first results of comparative study of the morphology and chemical composition in biomineral particles (phytoliths) of different types of wheat (Volzhskaya, Moskovskaya 39, Primorskaya 40). Optical microscopy reveals 5 morphotypes of phytolith in the stem and spike of wheat Triticum aestivum L. Although, only 3 morphotypes of phytolites were found in all three varieties, and the other 2 morphotypes were found only in some cases. These differences may be sort-specific signs. Various phytoliths have different linear sizes. As demosntrated, even within a sole type of wheat, there appears variability of the phytolitic composition. This fact may have significant implication for practical use of the phytolith analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-160

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.E. Pamirsky, K.S. Golokhvast Silaffins of diatoms: from applied biotechnology to biomedicine // Marine Drugs. 11 (2013) 3155-3167.

DOI: 10.3390/md11093155

Google Scholar

[2] K.S. Golokhvast, I.V. Seryodkin, V.V. Chaika, A.M. Zakharenko, I.E. Pamirsky Phytoliths in taxonomy of phylogenetic domains of plants // BioMed Research International. 2014 (2014) 1-9. Article ID 648326.

DOI: 10.1155/2014/648326

Google Scholar

[3] K.S. Golokhvast, I.V. Seryodkin, E.M. Bulakh, V.V. Chaika, A.M. Zakharenko, A.S. Kholodov, I.E. Pamirsky, G. Chung. Mycoliths morphotypes and biosilification proteins in wood-destroying and pileate fungi // Botanica Pacifica 7 (2018).

DOI: 10.17581/bp.2018.07102

Google Scholar

[4] I.E. Pamirsky, A.G. Klykov, G.A. Murugova, K.S. Golokhvast Silica biominerals (phytolith) compound of cultured barley plants (Hordeum vulgare l.) // IOP Conference Series: Materials Science and Engineering 225 (2017) article 012238.

DOI: 10.1088/1757-899x/225/1/012238

Google Scholar

[5] K.S. Golokhvast, A.M. Zakharenko, V.V. Chaika, A.S. Kholodov, O.R. Kudryavkina, I.V. Seryodkin, A.A. Sergievich, A.A. Karabtsov Phytolithes (SiO2 microparticles) of some multicellular algae (Sea of Japan) // Der Pharma Chemica 7 No11 (2015) 307-311.

Google Scholar

[6] D.R. Piperno Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, Maryland: AltaMira Press (2006) 238.

Google Scholar

[7] M. Saggu, J. Liu, A. Patel Identification of Subvisible Particles in Biopharmaceutical Formulations Using Raman Spectroscopy Provides Insight into Polysorbate 20 Degradation Pathway//Pharm Res. 32 (2015) 2877–2888.

DOI: 10.1007/s11095-015-1670-x

Google Scholar

[8] T.B. Ball, J.S. Gardner, N. Anderson Dentifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (gramineae) // American Journal of Botany. 86 No11 (1999) 1615–1623.

DOI: 10.2307/2656798

Google Scholar

[9] T.B. Ball, R. Ehlers, M.D. Standing Review of typologic and morphometric analysis of phytoliths produced by wheat and barley // Breeding Science. 59 (2009) 505–512.

DOI: 10.1270/jsbbs.59.505

Google Scholar