Determination of Electro-Optical Coefficients of Lithium Niobate Crystals

Article Preview

Abstract:

The electro-optical coefficients r22, rе of doped lithium niobate crystals were determined by the interference-polarization method, depending on the zinc concentration in the range 0.018-0.88 wt. %. The dependence of the electro-optical coefficient on the zinc concentration is nonlinear. The values r22, rе are determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-179

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Guenter and J.-P. Huignard. Photorefractive Materials and Their Applications 2, Springer, New York, (2007).

Google Scholar

[2] Yu.S. Kuzminov, Lithium niobate and lithium tantalate are materials for nonlinear optics, Nauka, Moscow, 1975. (in Russia).

Google Scholar

[3] I.V. Biryukova, High-temperature synthesis and modification of the properties of ferroelectric single crystals and the charge of niobate and lithium tantalate: dis. Ph.D. / I.V. Biryukova. - Apatity, 2005. (in Russia).

Google Scholar

[4] W. Bollmann, Stoichiometry and point defect in Lithium Niobate crystals, Crystal Res. and Technol, 18 (1983) 1147–1149.

DOI: 10.1002/crat.2170180914

Google Scholar

[5] E.R. Mustel, V.N. Parygin, Methods of modulation and scanning of light, Nauka, Moscow, 1970. (in Russia).

Google Scholar

[6] M.P. Petrov, S.I. Stepanov, A.V. Khomenko, Photorefractive crystals in coherent optics, Science, SPb, 1992. (in Russia).

Google Scholar

[7] P.S. Lopatina, V.V. Krishtop, V.I. Stroganov, A.V. Syui, V.A. Maksimenko, E.V. Tolstov, M.N. Litvinova, Electrooptical modulation of broadband light with gaussian amplitude distribution over the spectrum, Optics and spectroscopy. 113 (2012) 194–196.

DOI: 10.1134/s0030400x12080097

Google Scholar

[8] A. Ashkin, C.D. Boyd, T.M. Dziedzic, Photorefractive effect in crystals, Appl. Phys. Lett. 9 (1966) 72–80.

Google Scholar

[9] Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations, Appl. Phys. Lett., 77 (2000) 2494-2496.

DOI: 10.1063/1.1318721

Google Scholar

[10] T.R. Volk, M. Wöhlecke, N.M. Rubinina, A. Reichert, N. Razumovskii, Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium Niobate, Ferroelectrics, 183 (1996) 291-300.

DOI: 10.1080/00150199608224116

Google Scholar

[11] Seoung Hun Lee, Seung Hwan Kim, Kyong Hon Kim, Min Hee Lee, El-Hang Lee A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials, Optics express, 17 (2009) 9828.

DOI: 10.1364/oe.17.009828

Google Scholar

[12] Keishi Ueki, Chie Akiyama, Shogo Mori, and Ichiro Shoji. Accurate measurement of electro-optic coefficient of stoichiometric LiNbO3 // Conference on Lasers and Electro-Optics/Pacific Rim in Proceedings Conference on Lasers and Electro-Optics/Pacific Rim 2009. (Optical Society of America, 2009), paper TUP6_25.

DOI: 10.1109/cleopr.2009.5292449

Google Scholar

[13] I.A. Pargachev, V.A. Krakowsky, L.Ya. Serebrennikov, A.E. Mandel, S.M. Shandarov, A.V. Pugovkin, Yu.V. Kuleshov, G.I. Shvartsman, Electro-optical modulators of laser radiation based on high-resistance KTP crystals, Reports of TUSUR, 2 (2011) 119-123. (in Russia).

Google Scholar

[14] Maha A. Rahma Haitham L. Saadon, Ali F. Marhoon Frequency and wavelength dependences of the electro-optic coefficients r63 and r41 in congruent KDP crystals // Iraqi J. Laser. Part A. 12 (2013) 7.

Google Scholar

[15] Lianhua Jin, Kouhei Nara, Kuniharu Takizawa, and Eiichi Kondoh Dispersion measurement of the electro-optic coefficient r22 of the LiNbO3 crystal with Mueller matrix spectropolarimetry // Japanese journal of applied physics. 54 (2015) 078003.

DOI: 10.7567/jjap.54.078003

Google Scholar

[16] Michel Aillerie, Mustapha Abarkan, Sergey Kostritskii, Edvard Kokanyan Third column electro-optical coefficients of zirconium-doped congruent lithium niobate crystals // Optical materials. 36 (2014) 1238.

DOI: 10.1016/j.optmat.2014.03.006

Google Scholar

[17] Sidorov N.V., Palatnikov M.N., Yanichev A.A., Gabain A.A., Kruk A.A., Kalinnikov V.T. // Ordering of the structural units of the cation sublattice in zinc alloyed lithium niobate crystals. Reports of the Academy of Sciences. 452 (2013) 529-533. (in Russia).

DOI: 10.1134/s0012501613100059

Google Scholar

[18] W.A. Shurcliff, S.S. Ballard, Polarized light, London, (1964).

Google Scholar

[19] Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin: Springer, (2008).

Google Scholar

[20] M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, N.V. Sidorov, O.E. Kravchenko, V.V. Efremov, Growth of large LiNbO3(Mg) crystals, Inorganic materials, 49 (2013) 288-295.

DOI: 10.1134/s002016851303014x

Google Scholar

[21] M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, V.V. Efremov, O.E. Kravchenko, V.I. Skiba, N.V. Sidorov, I.N. Efremov, Growth of heavily doped LiNbO3(Zn) crystals, Inorganic materials, 51 (2015) 375-379.

DOI: 10.1134/s0020168515040123

Google Scholar

[22] M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, N.V. Sidorov, V.V. Efremov, I.N. Efremov, N.A. Teplyakova, D.V. Manukovskaya, Research of Concentration Conditions for Growth of Strongly Doped LiNbO3:Zn Single Crystals. P. 87-99. Advanced Materials – Manufacturing, Physics, Mechanics and Applications, Ivan A. Parinov, Shun-Hsyung, Vitaly Yu. Topolov (Eds.). Springer, Heidelberg, New York, Dordrecht, London. Springer Proceedings in Physics. V. 175. Springer – International Publishing, Switzerland, 2016. 707 p.

DOI: 10.1007/978-3-319-26324-3_7

Google Scholar