[1]
P. Guenter and J.-P. Huignard. Photorefractive Materials and Their Applications 2, Springer, New York, (2007).
Google Scholar
[2]
Yu.S. Kuzminov, Lithium niobate and lithium tantalate are materials for nonlinear optics, Nauka, Moscow, 1975. (in Russia).
Google Scholar
[3]
I.V. Biryukova, High-temperature synthesis and modification of the properties of ferroelectric single crystals and the charge of niobate and lithium tantalate: dis. Ph.D. / I.V. Biryukova. - Apatity, 2005. (in Russia).
Google Scholar
[4]
W. Bollmann, Stoichiometry and point defect in Lithium Niobate crystals, Crystal Res. and Technol, 18 (1983) 1147–1149.
DOI: 10.1002/crat.2170180914
Google Scholar
[5]
E.R. Mustel, V.N. Parygin, Methods of modulation and scanning of light, Nauka, Moscow, 1970. (in Russia).
Google Scholar
[6]
M.P. Petrov, S.I. Stepanov, A.V. Khomenko, Photorefractive crystals in coherent optics, Science, SPb, 1992. (in Russia).
Google Scholar
[7]
P.S. Lopatina, V.V. Krishtop, V.I. Stroganov, A.V. Syui, V.A. Maksimenko, E.V. Tolstov, M.N. Litvinova, Electrooptical modulation of broadband light with gaussian amplitude distribution over the spectrum, Optics and spectroscopy. 113 (2012) 194–196.
DOI: 10.1134/s0030400x12080097
Google Scholar
[8]
A. Ashkin, C.D. Boyd, T.M. Dziedzic, Photorefractive effect in crystals, Appl. Phys. Lett. 9 (1966) 72–80.
Google Scholar
[9]
Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations, Appl. Phys. Lett., 77 (2000) 2494-2496.
DOI: 10.1063/1.1318721
Google Scholar
[10]
T.R. Volk, M. Wöhlecke, N.M. Rubinina, A. Reichert, N. Razumovskii, Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium Niobate, Ferroelectrics, 183 (1996) 291-300.
DOI: 10.1080/00150199608224116
Google Scholar
[11]
Seoung Hun Lee, Seung Hwan Kim, Kyong Hon Kim, Min Hee Lee, El-Hang Lee A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials, Optics express, 17 (2009) 9828.
DOI: 10.1364/oe.17.009828
Google Scholar
[12]
Keishi Ueki, Chie Akiyama, Shogo Mori, and Ichiro Shoji. Accurate measurement of electro-optic coefficient of stoichiometric LiNbO3 // Conference on Lasers and Electro-Optics/Pacific Rim in Proceedings Conference on Lasers and Electro-Optics/Pacific Rim 2009. (Optical Society of America, 2009), paper TUP6_25.
DOI: 10.1109/cleopr.2009.5292449
Google Scholar
[13]
I.A. Pargachev, V.A. Krakowsky, L.Ya. Serebrennikov, A.E. Mandel, S.M. Shandarov, A.V. Pugovkin, Yu.V. Kuleshov, G.I. Shvartsman, Electro-optical modulators of laser radiation based on high-resistance KTP crystals, Reports of TUSUR, 2 (2011) 119-123. (in Russia).
Google Scholar
[14]
Maha A. Rahma Haitham L. Saadon, Ali F. Marhoon Frequency and wavelength dependences of the electro-optic coefficients r63 and r41 in congruent KDP crystals // Iraqi J. Laser. Part A. 12 (2013) 7.
Google Scholar
[15]
Lianhua Jin, Kouhei Nara, Kuniharu Takizawa, and Eiichi Kondoh Dispersion measurement of the electro-optic coefficient r22 of the LiNbO3 crystal with Mueller matrix spectropolarimetry // Japanese journal of applied physics. 54 (2015) 078003.
DOI: 10.7567/jjap.54.078003
Google Scholar
[16]
Michel Aillerie, Mustapha Abarkan, Sergey Kostritskii, Edvard Kokanyan Third column electro-optical coefficients of zirconium-doped congruent lithium niobate crystals // Optical materials. 36 (2014) 1238.
DOI: 10.1016/j.optmat.2014.03.006
Google Scholar
[17]
Sidorov N.V., Palatnikov M.N., Yanichev A.A., Gabain A.A., Kruk A.A., Kalinnikov V.T. // Ordering of the structural units of the cation sublattice in zinc alloyed lithium niobate crystals. Reports of the Academy of Sciences. 452 (2013) 529-533. (in Russia).
DOI: 10.1134/s0012501613100059
Google Scholar
[18]
W.A. Shurcliff, S.S. Ballard, Polarized light, London, (1964).
Google Scholar
[19]
Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin: Springer, (2008).
Google Scholar
[20]
M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, N.V. Sidorov, O.E. Kravchenko, V.V. Efremov, Growth of large LiNbO3(Mg) crystals, Inorganic materials, 49 (2013) 288-295.
DOI: 10.1134/s002016851303014x
Google Scholar
[21]
M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, V.V. Efremov, O.E. Kravchenko, V.I. Skiba, N.V. Sidorov, I.N. Efremov, Growth of heavily doped LiNbO3(Zn) crystals, Inorganic materials, 51 (2015) 375-379.
DOI: 10.1134/s0020168515040123
Google Scholar
[22]
M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, N.V. Sidorov, V.V. Efremov, I.N. Efremov, N.A. Teplyakova, D.V. Manukovskaya, Research of Concentration Conditions for Growth of Strongly Doped LiNbO3:Zn Single Crystals. P. 87-99. Advanced Materials – Manufacturing, Physics, Mechanics and Applications, Ivan A. Parinov, Shun-Hsyung, Vitaly Yu. Topolov (Eds.). Springer, Heidelberg, New York, Dordrecht, London. Springer Proceedings in Physics. V. 175. Springer – International Publishing, Switzerland, 2016. 707 p.
DOI: 10.1007/978-3-319-26324-3_7
Google Scholar