[1]
Conway B E. Transition from super capacitor' to 'battery, behavior in electrochemical energy storage. J. Electrochem. Soc., 1991, 138(6): 1539-1548.
DOI: 10.1149/1.2085829
Google Scholar
[2]
Han Enshan, Zhang Xiaoping, Xu Han. Preparation and modification of nano-sized MnO2 electrode material for super capacitor. Inorganic Chemicals Industry, 2008, 40(6): 34-36.
Google Scholar
[3]
Yuan Changzhou, Zhang Xiaogang, Gao Bo. Synthesis and Eletrochemical Capacitance of Porous Co(OH)2. Chinese Journal of Applied Chemistry, 2006, 23(4): 456-458.
Google Scholar
[4]
Toupin M, Brousse T, Belanger D. Charge storagemechanism of MnO2 electrode used in aqueous electrochemical capacitor . Chem. Mater. 2004, 16: 3184-3190.
DOI: 10.1021/cm049649j
Google Scholar
[5]
Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications . J. Power Sources, 2007, 166: 590-594.
DOI: 10.1016/j.jpowsour.2007.01.036
Google Scholar
[6]
Zhe Sun, Kaiyu Liu, Huaqiang Cao. Study on Meso-C/MnO2 Asymmetric Supercapacitors. Acta Physico-Chimica Sinica, 2009, 25(10): 1991-1997.
Google Scholar
[7]
Zhijun Jiang, Kaiyu Liu, Huaqiang Cao. L-Lysine-Assisted Synthesis of ZrO2 Nanocrystals and Their Application in Photocatalysis. Journal of Physical Chemistry, 2009, 113(42): 18259-18263.
DOI: 10.1021/jp9057324
Google Scholar
[8]
Hongtao Liu, Yang Liu, Jinghong Li. Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010, 6(6): 1685–1697.
Google Scholar
[9]
Hongtao Liu, Yan Liu, ZanWang, et al. Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology, 2010, 21(10): 105707-105711.
DOI: 10.1088/0957-4484/21/10/105707
Google Scholar
[10]
Lianxing Li, Xincun Tang, Zhuo Luo, et al. A novel parameter for evaluation on power performance of Ni-MH rechargeable batteries. Int.ernational Journal of Hydrogen Energy, 2010, 35(7): 2847-2851.
DOI: 10.1016/j.ijhydene.2009.05.007
Google Scholar
[11]
Novoselov K S, Geim A K, Morozov S V. Science, et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306(5296): 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[12]
Yoo E, Kim J, Hosono E, et al. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters, 2008, 8(8): 2277-2282.
DOI: 10.1021/nl800957b
Google Scholar
[13]
Schniepp H C, Li J L, McAllister M J, et al. Fuctionalized single graphene sheets derived from splitting graphite oxide. J.phys.chem.b, 2006, 110(17): 8535-8539.
DOI: 10.1021/jp060936f
Google Scholar
[14]
Kovtyukhova N I, Oliver P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchin skiy A D, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations . Chem. Mater, 1999, 11: 771-778.
DOI: 10.1021/cm981085u
Google Scholar
[15]
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reductionof exfoliated graphite oxide . Carbon. 2007, 45: 1558-1565.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar