[1]
W.H Kuang, F. Ruan, X.T Xiao, et al. Process analysis and control strategy of valve's forging, Machine Tool and Hydraulics, 1(2004), 153-154.
Google Scholar
[2]
M.J. Cao. Study on heat treatment process of valve steel 40Cr10Si2Mo, Special Steel Technology,20 (2014), 24-28.
Google Scholar
[3]
Y. Mo, D.Z. Wang, B. Jiang, et al. Influences of grain size on electrochemical corrosion behaviors of nickel-based Alloy 718, Materials Science Forum, 852(2016), 105-112.
DOI: 10.4028/www.scientific.net/msf.852.105
Google Scholar
[4]
Y. Y, C. Yang, Q. Ran, et al. Microstructure evolution and stress-rupture properties of Nimonic 80A after various heat treatments, Materials & Design, 47(2013), 218-226.
DOI: 10.1016/j.matdes.2012.11.043
Google Scholar
[5]
R.B. Frank. Age-hardenable superalloys, Advanced Materials & Processes, 163(2005), 37-42.
Google Scholar
[6]
Z. Zhu, Y. Cai, Y. Sui, et al. Heat treatment research of a Ni-based superalloy used as exhaust valves in internal combustion engines, Journal of Jiangsu University of Science and Technology, 31(2017), 740-745.
Google Scholar
[7]
M. Zhao, T. Hanamura, H. Qiu, et al. Grain growth and Hall-Petch relation in dual-sized ferrite/cementite steel with nano-sized cementite particles in a heterogeneous and dense distribution, Scripta Materialia, 54(2006), 1193-1197.
DOI: 10.1016/j.scriptamat.2005.11.032
Google Scholar
[8]
Y. Zhao, J. Shi, W. Cao, et al. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel, Journal of Zhejiang University-SCIENCE A, 12(2011), 171-176.
DOI: 10.1631/jzus.a1000150
Google Scholar
[9]
D.A. Fadare, T.G. Fadara, and O.Y. Akanbi. Effect of heat treatment on mechanical properties and microstructure of NST 37-2 Steel, Journal of Minerals & Materials Characterization & Engineering, 10(2011), 299-308.
DOI: 10.4236/jmmce.2011.103020
Google Scholar