Preparation of Gold Nanowires by Photochemical Glucose Reduction

Article Preview

Abstract:

HAuCl4 was reduced by glucose as reducing agent and dispersant under UV radiation and acetone as photo sensitizer. The experimental samples were characterized by the transmission electron microscopy and UV-visible spectrophotometer, and the results show that these gold nanoparticles’ size is uniform, monodisperse distribution of spherical particles of average diameter of 5.8 nm, and gold nanowires with two-dimensional network structure were successfully prepared. The influence of glucose concentration on reaction under this condition and the mechanism of nucleation and growth of the photochemical reduction were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-17

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qi, Z. M, Zhou, H. S., Matsuda, N. J. Phys. Chem. B 2004, 108, 7006-7011.

Google Scholar

[2] Panigrahi, S.; kundu, S.; Ghosh, S. K.et al.J. Nanoparticle Res., 2004, 6, 411-414.

Google Scholar

[3] Marie L. Sandrock and Colby A. Foss, Jr., J. Phys. Chem. B, 1999, 103 (51), 11398 -11406.

Google Scholar

[4] Mahnaz El-Kouedi, Marie L. Sandrock, Carolyn J. Seugling, and Colby A. Foss, J, Chem. Mater, 1998, 10 (11), 3287 -3289.

DOI: 10.1021/cm980414f

Google Scholar

[5] Ser-Sing Chang, Chao-Wen Shih, Cheng-Dah Chen, Wei-Cheng Lai, and C. R. Chris Wang, Langmuir, 1999, 15 (3), 701 -709.

Google Scholar

[6] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, , J. Phys. Chem. A, 1999, 103 (9), 1165 -1170.

Google Scholar

[7] J. Tanori and M. P. Pileni, Langmuir 1997, 13, 639-646.

Google Scholar

[8] Liu Hong-Wen,Hou Shi-Min,Zhang Geng-Min. .et al.Acta Phys. –Chim. Sin. 2002, 18(04), 359-363.

Google Scholar

[9] Govindaraj, A.; Satisshkumar, B. C.; Nath, M.; Rao, C. N. R. Chem. Mater. 2000, 12, 202.

Google Scholar

[10] Fullam, S.; Cottell, D.; Rensmo, H.; Fitzmauice, D. Adv, Mater. 2000, 12, 1430.

Google Scholar

[11] Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065.

Google Scholar

[12] Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, (1957).

Google Scholar

[13] Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem.Commun. 2001,617.

Google Scholar

[14] Franklin, K.; Jae, H. S.; Peidong Y. J. Am. Chem. Soc. 2002, 124, 14316.

Google Scholar

[15] Bianca M. I. van der Zande, Laurent Pagès, Rifat A. M. Hikmet, and Alfons van Blaaderen, J. Phys. Chem. B, 1999, 103 (28), 5761 -5767.

DOI: 10.1021/jp9847383

Google Scholar

[16] Bianca M. I. van der Zande Marcel R. Böhmer, Lambertus G. J. Fokkink, and Christian Schönenberger, , Langmuir, 2000, 16 (2), 451 -458.

DOI: 10.1021/la9900425

Google Scholar

[17] .Nathir A. F. Al-Rawashdeh, Marie L. Sandrock, Carolyn J. Seugling, and Colby A. Foss, Jr., J. Phys. Chem. B, 1998, 102 (2), 361 -371.

Google Scholar

[18] Mallik, K.; Mandal, M.; Pradhan, N.;Pal, T. Nano Letters 2001, 1, 319.

Google Scholar

[19] Dong, S. -A.; Tang, C.; Zhou, H.; Zhao, H. Zh. Gold Bulletin. 2004, 37, 187.

Google Scholar

[20] Yonezawa, t.; Onoue, S.; Kimizuka, N. Chem. Lett. 2002. 12, 1172.

Google Scholar

[21] .Yonezawa, t.; Onoue, S.; Kimizuka, N. Chem. Lett. 2002. 12, 1172.

Google Scholar

[22] Kiely, C.J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Nature 1998, 396.

Google Scholar

[23] Chow,M. K.; Zukoski, C. F. J. Colloid Interface Sci.1994, 165,97.

Google Scholar

[24] Biggs, S.; Mulvaney, P.; Zukoski, C.F.; Grieser, F. J.Am.Chem. Soc. 1994 ,116, 9150.

Google Scholar