Solvothermal Synthesis and Luminescence Properties of Gd2O2S:RE3+ (RE3+=Eu3+/Tb3+) Hollow Sphere

Article Preview

Abstract:

Eu3+ and Tb3+ ions singly activated Gd2O2S hollow spheres have been successfully synthesized via solvothermal method by using Gd (NO3)3, Eu (NO3)3, Tb (NO3)3 and thiourea as raw materials. Detailed characterization of the as-prepared samples were obtained by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), transmission electronic microscope (TEM) and photoluminescence (PL) spectroscopy. The results demonstrate that at 220 oC for 24 h, the molar ratio of thiourea/Gd3+ has no significant impact on the phase composition of Gd2O2S products. With the reaction time increased from 6 h to 24 h, the morphology of Gd2O2S samples changed from ellipsoidal to near-spheroidal structure, but still remained hollow structure. PL results show that the strongest emission peaks for Gd2O2S:Eu3+ and Gd2O2S:Tb3+ samples were centered at 625 nm and 545 nm, corresponding to the 5D07F2 transition of Eu3+ ions and 5D47F5 transition of Tb3+ ions, respectively. The quenching concentrations for Eu3+ and Tb3+ ions were 12% and 6%, which can be attributed to the exchange interaction for Eu3+ and Tb3+ ions, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.P. Du, Y.W. Zhang, L.D. Sun and C.H. Yan: Atomically Efficient Synthesis of Self-assembled Monodisperse and Ultrathin Lanthanide Oxychloride Nanoplates, J. Am. Chem. Soc., Vol. 131 (2009), p.3162.

DOI: 10.1021/ja8095416

Google Scholar

[2] B.W Zhang, H.F. Zou, H.G. Guan, Y.Z. Dai, Y.D. Song, X.Q. Zhou and Y. Sheng: Lu2O2S: Tb3+, Eu3+ nanorods: luminescence, energy transfer, and multicolour tuneable emission, Cryst. Eng. Comm., Vol. 18 (2016), p.1.

DOI: 10.1039/c6ce01441k

Google Scholar

[3] F. Liu, J.B. Lian, N.C. Wu, J. He, X. Zhang and F. Liu: One-step solvothermal synthesis, a worm-shaped morphology and luminescence properties of green-emitting Y2O2S:Tb3+ nanophosphors, Opt and Laser Technol., Vol. 99 (2018), p.167.

DOI: 10.1016/j.optlastec.2017.08.031

Google Scholar

[4] J.B. Lian, F. Liu, P. Liang, J.M. Ren and F. Liu: Synthesis of Gd2O2S:Eu3+ hollow sphere by a hydrothermal method assisting with reduction route, J. Ceram. Process. Res., Vol. 17 (2016), p.752.

Google Scholar

[5] B.C. Liu, Q. Wang, S.L. Yu, T. Zhao, J.X. Han P. Jing, W.T. Hu, L.X. Liu, J. Zhang, L.D. Sun , C.H. Yan, H. Ren, L.Y. Zhang, T.T. Wang, L. Li, Z. Su and C.G. Wang: Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application, Chem. Commun., Vol. 49 (2013), p.6036.

DOI: 10.1039/c3nr02759g

Google Scholar

[6] J. Hu, M. Chen, X. Fang and L. Wu: Fabrication and application of inorganic hollow spheres, Chem. Soc. Rev., Vol. 40 (2011), p.5472.

DOI: 10.1039/c1cs15103g

Google Scholar

[7] L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li and X.T. Dong: A new tactic to achieve Y2O2S:Yb3+/Er3+ up-conversion luminescent hollow nanofibers, Cryst. Eng. Comm., Vol. 17 (2015) p.2529.

DOI: 10.1039/c4ce02527j

Google Scholar

[8] Z.H. Xu, Y. Cao, C.X. Li, P.A. Ma, X.F. Zhai, S.S. Huang, X.J. Kang, M.M. Shang, D.M. Yang, Y.L. Dai and J. Lin: Urchin-like GdPO4 and GdPO4:Eu3+ hollow spheres-hydrothermal synthesis, luminescence and drug-delivery properties, J. Mater. Chem., Vol. 21 (2011), p.3686.

DOI: 10.1039/c0jm03333b

Google Scholar

[9] Z.C. Ma, L.M. Wang, D.Q. Chu, H.M. Sun and A.X. Wang: Template-free synthesis of complicated double-wall Cu2O hollow spheres with enhanced visible photocatalytic activities RSC Adv., Vol. 5 (2015), p.8223.

DOI: 10.1039/c4ra12412j

Google Scholar

[10] H. Liu, F. Ye, H.B. Cao, G. Ji, J.Y. Lee and J. Yang: A core–shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures, Nanoscale,Vol. 5 (2013), p.6901.

DOI: 10.1039/c3nr01949g

Google Scholar

[11] X. Lu, L.Y. Yang, Q.L. Ma, J. Tian and X.T. Dong: A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor, J. Mater. Sci. Mater. Electron., 25 (2014), p.5388.

DOI: 10.1007/s10854-014-2317-0

Google Scholar

[12] F. Wang, B. Yang, J.C. Zhang, Y.N. Dai and W.H. Ma: Highly enhanced luminescence of Tb3+-activated gadolinium oxysulfide phosphor by doping with Zn2+ ions, J. Lumin., Vol. 130 (2010) p.473.

DOI: 10.1016/j.jlumin.2009.10.016

Google Scholar

[13] S. Blahuta, B. Viana, A. Bessiere, E. Mattmann and B. LaCourse: Luminescence quenching processes in Gd2O2S: Pr3+ ,Ce3+ scintillating ceramics, Opt. Mater., Vol. 33 (2011), p.1514.

DOI: 10.1016/j.optmat.2011.02.040

Google Scholar

[14] G. Ajithkumar, B. Yoo, D.E. Goral, P.J. Hornsby, A.L. Lin, U. Ladiwala, V.P. Dravide and D.K. Sardara: Multimodal bioimaging using a rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties, J. Mater. Chem. B, Vol. 1 (2013), p.1561.

DOI: 10.1039/c3tb00551h

Google Scholar

[15] K.H.R.E. Saraee, M.D. Zadeh, M. Mostajaboddavati and A.A. Kharieky: Changes of Tb emission by non-radiative energy transfer from Dy in Gd2O2S:Tb phosphor, J. Electron. Mater., Vol. 45 (2016), p.4806.

DOI: 10.1007/s11664-016-4639-6

Google Scholar

[16] S. David, C. Michail, I. Seferis, I. Valais, G. Fountos, P. Liaparinos, I. Kandarakis and N. Kalyvas: Evaluation of Gd2O2S:Pr granular phosphor properties for X-ray mammography imaging, J. Lumin., Vol. 169 (2016), p.706.

DOI: 10.1016/j.jlumin.2015.01.044

Google Scholar

[17] S.A. Osseni, S. Lechevallier, M. Verelst, C. Dujardin, J. Dexpert-Ghys, D. Neumeyer, M. Leclercq, H. Baaziz, D. Cussac, V. Santran and R. Mauricot: New nanoplatform based on Gd2O2S: Eu3+ core: synthesis, characterization and use for in vitro bio-labelling, J. Mater. Chem., Vol. 21 (2011), p.18365.

DOI: 10.1039/c1jm13542b

Google Scholar

[18] G.Q. Wu, H.M. Qin, S.W. Feng, X.J. Tan, Z.H. Luo, Y.F. Liu, H.Z. Shao, J. Jiang and H.C. Jiang: Ultrafine Gd2O2S: Pr powders prepared via urea precipitation method using SO2/SO42- as sulfuration agent-A comparative study, Powder Technol., Vol. 305 (2017), p.382.

DOI: 10.1016/j.powtec.2016.10.014

Google Scholar

[19] W. Fan, X. Y. Zhang, L. X. Chen and L. P. Lu: Preparation of Gd2O2S:Er3+,Yb3+phosphor and its multi-wavelength sensitive upconversion luminescence mechanism, Crys. Teng. Comm., Vol. 17 (2015), p.1881.

DOI: 10.1039/c4ce02243b

Google Scholar

[21] J. Huang, Y. H. Song, Y. Sheng, K. Y. Yan and H. B. Li: Gd2O2S:Eu3+ and Gd2O2S:Eu3+/Gd2O2S hollow microspheres: Solvothermal preparation and luminescence properties J. Alloy. Compd., Vol. 532 (2012), p.34.

DOI: 10.1016/j.jallcom.2012.04.005

Google Scholar

[21] T. Hirai, T. Hirano and I. Komasawa: Preparation of Gd2O3:Eu3+ and Gd2O2S: Eu3+ Phosphor Fine Particles Using an Emulsion Liquid Membrane System, J. Coll. Int. Sci., Vol. 253 (2002), p.62.

DOI: 10.1006/jcis.2002.8534

Google Scholar

[22] Y.J. Ding, Z.Y. Zhang, L.X. Wang, Q.T. Zhang and S.B. Pan: The role of sodium compound fluxes used to synthesize Gd2O2S:Tb3+ by sulfide fusion method, J. Mater. Sci.: Mater. Electron., Vol. 28 (2016), p.2723.

DOI: 10.1007/s10854-016-5851-0

Google Scholar

[23] Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu and H. Zhang: Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals, J. Phys. Chem. C, Vol. 112 (2008), p.19399.

DOI: 10.1021/jp808343f

Google Scholar

[24] S.H. Huang and L.R. Lou: Concentration dependence of sensitizer fluorescence intensity in energy transfer Chin, J. Lumin., Vol. 11 (1990), p.1.

Google Scholar

[25] C. He, Z.G. Xia and Q.L. Liu: Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor, Opt.Mater., Vol. 42 (2015), p.11.

DOI: 10.1016/j.optmat.2014.12.012

Google Scholar