[1]
D. Nestler, M. Trautmann, S. Nendel, et al., Innovative hybrid laminates of aluminium alloy foils and fibre‐reinforced thermoplastic layers, Materials Science and Engineering Technology 47 (11) (2016) 1121-1131.
DOI: 10.1002/mawe.201600636
Google Scholar
[2]
M. Petersen, U. Heckmann, R. Bandorf, et al., Me-DLC films as material for highly sensitive temperature compensated strain gauges, Diamond & Related Materials 20 (5-6) (2011) 814-818.
DOI: 10.1016/j.diamond.2011.03.036
Google Scholar
[3]
G. Schultes, P. Frey, D. Goettel, et al., Strain sensitivity of nickel-containing amorphous hydrogenated carbon (Ni:α-C:H) thin films prepared by r.f. sputtering using substrate bias conditions, Diamond & Related Materials 15 (1) (2006) 80-89.
DOI: 10.1016/j.diamond.2005.07.005
Google Scholar
[4]
D. Wett, D. Nestler, G. Wagner, et al., Preparation of Ni-C thin films for strain sensor applications in new hybrid laminates with thermoplastic matrix, Materials Science Forum 825–826 (2015) 548-555.
DOI: 10.4028/www.scientific.net/MSF.825-826.548
Google Scholar
[5]
C. Karapepas, D. Nestler, D. Wett, et al., Annealing effects of high sensitive thin strain gauges consisting of nickel carbon nanocomposites. Journal of Reinforced Plastics and Composites 37(22) (2018) 1378-1384.
DOI: 10.1177/0731684418796309
Google Scholar
[6]
K. Nitzsche ,H.-J. Ullrich, Funktionswerkstoffe der Elektrotechnik und Elektronik. 2. Auflage. Leipzig.Stuttgart, Hüthig Verlag 488 (1998). ISBN 978–3778512647.
Google Scholar
[7]
R. Koppert, S. Uhlig, H. Schmid-Engel, et al., Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films, Diamond & Related Materials 25 (2012) 50-58.
DOI: 10.1016/j.diamond.2012.01.031
Google Scholar
[8]
A. Furlan, J. Lu, L. Hultman, et al., Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. Journal of Physics Condensed Matter 26 (41) (2014) 415501.
DOI: 10.1088/0953-8984/26/41/415501
Google Scholar
[9]
S. Pacley, W. C. Mitchel, P. T. Murray, et al., The role of the nickel catalyst and its chemical and structural evolution during carbon nanopearl growth, Journal of Electronic Materials 42 (3) (2013) 417-425.
DOI: 10.1007/s11664-012-2367-0
Google Scholar
[10]
F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (3) (1970) 1126-1130.
DOI: 10.1063/1.1674108
Google Scholar
[11]
F. Tuinstra and J.L. Koenig, Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 4 (4) (1970) 492-499.
DOI: 10.1177/002199837000400405
Google Scholar
[12]
S. Schmidt, Beschichtung von Kohlenstofffasern durch chemische Gasphaseabscheidung (CVD), PhD thesis, Lehrstuhl für Chemische Reaktionstechnik der FAU Erlangen-Nürnberg (2004) 63.
Google Scholar
[13]
B.A. Movchan and A.V Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Fiz. Met. Metalloved 28 (1969) 653.
Google Scholar
[14]
J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11 (4) (1974) 666-670.
DOI: 10.1116/1.1312732
Google Scholar
[15]
J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, J. Vac. Sci. Technol. 12 (1975) 830.
DOI: 10.1116/1.568682
Google Scholar
[16]
D.A. Bosworth, N.A. Stelmeshenko and Z.H. Barber, Structural control of carbon nickel nano–composite thin films without substrate heating, Thin Solid Films 540 (2013) 10-16.
DOI: 10.1016/j.tsf.2013.05.112
Google Scholar
[17]
S. Sinharoy and L.L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films 53 (1) (1978) 31-36.
DOI: 10.1016/0040-6090(78)90367-X
Google Scholar