CMC-Jacketed Piping for High-Temperature Applications: Concept, Laboratory Tests and Large-Scale Application Test

Article Preview

Abstract:

The increasing market share of highly volatile electricity generated from renewable sources like wind or solar energy, leads to enormous challenges in the energy sector. Since large-scale storage systems are neither currently nor in the near future available, the gap between electricity from renewable sources and current electricity demand has to be closed with flexibly operated conventional power plants. In order to be a viable, cost-effective option in tomorrow’s energy market future power plants must be highly efficient while having low CO2 emissions. Furthermore, they have to be highly reactive to counter instabilities in the electrical grid due to fluctuations in renewable sources. Current materials used in power plants are only within limits suited to experience extreme changes in operational loads. However, extreme changes of operational loads will become increasingly severe with a growing share of renewables. Our project team has developed a new concept for CMC-jacketed pipes to alleviate these issues. Recently, this concept was further developed and tested in laboratory as well as a large-scale application test at Grosskraftwerk Mannheim (GKM). All tests are still ongoing. Additionally, to the use in modern highly efficient power plants such CMC-jacketed piping is also suitable for other high-temperature applications, like e.g. solar power plants or industrial chemical applications.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Publications Office of the European Union, EU Energy in Figures, Statistical Pocketbook 2017, European Union, Luxembourg (2017).

Google Scholar

[2] Agora Energiewende, Stromspeicher in der Energiewende, Agora Energiewende, Berlin (2014).

Google Scholar

[3] Umweltbundesamt, Konventionelle Kraftwerke und erneuerbare Energien, URL: https://www.umweltbundesamt.de/daten/energie/konventionelle-kraftwerke-erneuerbare-energien#textpart-1 (Last accessed: 06.03.2019), Umweltbundesamt, Berlin (2018).

DOI: 10.1007/978-3-658-23024-1_3

Google Scholar

[4] Agora Energiewende, Flexibility in thermal power plants with a focus on existing coal-fired power plants, Agora Energiewende, Berlin (2017).

Google Scholar

[5] A. Buttler, H. Spliethoff, Kampf der Studien Eine Metaanalyse aktueller Energiesystemstudien zum Bedarf an Speichern und konventionellen Kraftwerken im Kontext der Annahmen und der historischen Entwicklung, Schriftenreihe Energiesysteme im Wandel-Teil II, Technische Universität München (2016).

Google Scholar

[6] O. Then, M. Bachhiesl, S. Göhring, T. Linnemann, L. Mohrbach, S.Prost and C. Weßelmann, Facts and figures electricity generation 2018/2019, URL: https://www.vgb.org/download_unterlagen.html?dfid=94498 (Last accessed: 06.03.2019) VGB Powertech e.V. (2018).

Google Scholar

[7] Grosskraftwerk Mannheim, Block 9 Das Magazin, Von der Planung bis zur Inbetriebnahme, Grosskraftwerk Mannheim AG, URL: https://www.gkm.de/gkm_flipbook/block9/ (Last accessed: 06.03.2019), Mannheim (2015).

Google Scholar

[8] E. Roos, K. Maile, M. Seidenfuß, Werkstoffkunde für Ingenieure, Springer, Berlin/Heidelberg (2017).

DOI: 10.1007/978-3-662-49532-2

Google Scholar

[9] E. Siebel, S. Schwaigerer, Die Beanspruchungsverhältnisse gewickelter Behälter, Chemie Ingenieur Technik, Volume 24 Issue 4, 199-203 (1952).

DOI: 10.1002/cite.330240404

Google Scholar

[10] J. Class, F. Maier, Bauarten von Hochdruck-Hohlkörpern in Mehrteil- insbesondere Mehrlagen-Konstruktion, Chemie Ingenieur Technik, Volume 24 Issue 4, 184-198 (1952).

DOI: 10.1002/cite.330240403

Google Scholar

[11] P. Laufs, Reaktorsicherheit für Leistungskernkraftwerke 2, Springer Vieweg, Berlin (2018).

Google Scholar

[12] B. Affendy, A. Shibly, Obikou: A strengthening method for high temperature high pressure seam welded or seamless pipes, MPA Stuttgart (2018).

Google Scholar

[13] ETD Consulting, Obikou' or 'Bandage reinforcement method,, URL: http://www.etd-consulting.com/obikou (Last accessed: 06.03.2019).

Google Scholar

[14] J. E. Green, Automated Filament Winding, in: S.T. Peters (Ed.), Composite filament Winding, ASM International, pp.7-18, Materials Park, Ohio (2011).

DOI: 10.31399/asm.tb.cfw.t52860007

Google Scholar

[15] K. Maile, K. Berreth, A. Lyutovich, R. Weiß, T. Scheibel, M. Ebert, M. Henrich, A. Lauer, Patent DE10 2006 038 713A1: Druckfester fluidbeaufschlagter Körper, Schunk Kohlenstofftechnik, Gießen (2006).

Google Scholar

[16] M. Huang, K. Berreth, K. Maile, Ressourceneffiziente faserummantelte Stahlrohre für Höchsttemperaturdampfanwendungen, Abschlussbericht des BMBF-Forschungsvorhabens 03X3529B, MPA Universität Stuttgart (2013).

Google Scholar

[17] M. Huang, Numerische und experimentelle Untersuchungen von Keramik-Metall-Compoundrohren für die Hochtemperaturanwendung in Kraftwerksrohrleitungen, PhD thesis, Universität Stuttgart (2015).

Google Scholar

[18] K. Berrreth, K. Maile, M. Huang, High temperature applications of ceramic fibers compounded with steel pipes, in J. M. Hausmann, M. Siebert, International Conference Euro Hybrid Materials and Structures pp.131-137 (2014).

Google Scholar

[19] VdTÜV, Werkstoffblatt 511/2 Warmfester Stahl X10CrMoVNb9-1; Werkstoff-Nr.: 1.4903 Nahtloses Rohr, nahtloser Hohlkörper, Verband der TÜV e.V. (Sept. 2014).

Google Scholar

[20] Normenausschuss Eisen und Stahl, DIN EN 10216-2 Nahtlose Stahlrohre für Druckbeanspruchungen – Technische Lieferbedingungen – Teil 2: Rohre aus unlegierten und legierten Stählen mit festgelegten Eigenschaften bei erhöhten Temperaturen, Deutsches Institut für Normung e.V. (Feb. 2014).

DOI: 10.31030/1962939

Google Scholar

[21] DIN-Normenausschuss Rohrleitungen und Dampfkesselanlagen, DIN EN 13480-3 Metallische industrielle Rohrleitungen –Teil 3: Konstruktion und Berechnung; Deutsches Institut für Normung e.V., (Dec. 2014).

DOI: 10.31030/2853473

Google Scholar