Experimental Characterization of the Fiber Angles of Multiple Curved Laminate Segments Using Prepreg-Based Carbon Fiber Reinforced Polymers as a Structure for a Non-Engaging Bellows Coupling

Article Preview

Abstract:

This paper deals with the experimental characterization of the fiber angles of multiple curved laminate segments using prepreg-based carbon fiber reinforced polymers as a structure for a non-engaging bellows coupling. The main task of this generic shaft coupling is the torsionally stiff torque transmission and the compensation of axial displacement as well as the angular misalignment of metallic shafts. The multiple curved structure can be manually draped by several cut segments using epoxy-based fabric prepreg. Moreover, the intended initial fiber orientation of the laminate is ±45° with respect to the rotation axis of the structure. For the experimental determination of the local fiber angles various CFRP cut segments were defined as CFRP specimens with varying number of layers and constant width. All investigations were based on cured CFRP specimens. The measurements were performed with a robot-assisted optical surface sensor and an optical digital microscope. The influence of the manual draping process according to the z-method could be quantitatively determined by the fiber angle measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

555-562

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, Springer, Berlin, (2007).

DOI: 10.1007/978-3-540-72190-1

Google Scholar

[2] M. Waimer, D. Kohlgrüber, D. Hachenberg, H. Voggenreiter, Experimental study of CFRP components subjected to dynamic crash loads, Composite Structures 105 (2013) 288-299.

DOI: 10.1016/j.compstruct.2013.05.030

Google Scholar

[3] K. Drechsler, P. Bockelmann, Produktentwicklung mit neuen Materialien am Beispiel der Carbon Composites, in: U. Lindemann (Hrsg.), Handbuch Produktentwicklung, Hanser, München, 2016, pp.877-904.

DOI: 10.3139/9783446445819.031

Google Scholar

[4] K. Drechsler, M. Heine, P. Mitschang, W. Baur, U. Gruber, L. Fischer, O. Öttinger, B. Heidenreich, N. Lützenburger, H. Voggenreiter, Carbon Fiber Reinforced Composites, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2009, pp.1-120.

DOI: 10.1002/14356007.m05_m02

Google Scholar

[5] L.C. Bank, Composites for Construction, Structural Design with FRP Materials, John Wiley & Sons, Inc., Hoboken, (2006).

Google Scholar

[6] H. Lengsfeld, F. Wolff-Fabris, J. Krämer, J. Lacalle, V. Altstädt, Composite Technology, Prepregs and Monolithic Part Fabrication Technologies, Hanser, München, (2016).

DOI: 10.3139/9781569906002.fm

Google Scholar

[7] M. Gude, F. Lenz, A. Gruhl, et al., Design and automated manufacturing of profiled composite driveshafts, Science and Engineering of Composite Materials 22(2) (2014) 187-197.

DOI: 10.1515/secm-2014-0048

Google Scholar

[8] P. Tichelmann, Auslegung und Optimierung Versatz-ausgleichender Bauelemente und ihre Integration in eine Antriebswelle, Diss.-Darmstadt, Shaker, Aachen, (2009).

Google Scholar

[9] J. Katz, Gestaltung und Optimierung einer nichtschaltbaren Lamellenkupplung aus Glasfaser-Kunststoff-Verbund, Diss.-Darmstadt, Shaker, Aachen, (2015).

DOI: 10.37544/0720-5953-2015-05-30

Google Scholar

[10] G. Niemann, B. Neumann, H. Winter, Maschinenelemente Band 3, Springer, Berlin, (1986).

Google Scholar

[11] D. Muhs, H. Wittel, D. Jannasch, J. Voßiek, Roloff/Matek Maschinenelemente, Springer Vieweg, Wiesbaden, (2015).

DOI: 10.1007/978-3-322-94298-2

Google Scholar

[12] C. Oblinger, A. Baeten, K. Drechsler, Numerical analysis on the structural behavior of a non-engaging CFRP bellows coupling for propulsion technology, Key Engineering Materials, Vol. 742 (2017) 723-731.

DOI: 10.4028/www.scientific.net/kem.742.723

Google Scholar

[13] C. Oblinger, A. Baeten, K. Drechsler, Experimental investigation of the design concept for a non-engaging bellows coupling made of prepreg-based carbon fiber reinforced polymers, in: Proceedings of Hybrid - Materials and Structures 2018, pp.269-276.

DOI: 10.4028/www.scientific.net/kem.809.555

Google Scholar

[14] W. Palfinger, S. Thumfart, C. Eitzinger, Photometric stereo on carbon fiber surfaces, in: H. Mayer (Ed.), 35th Workshop of the Austrian Association for Pattern Recognition, (2011).

Google Scholar

[15] S. Zambal, W. Palfinger, M. Stöger, C. Eitzinger, Accurate fibre orientation measurement for carbon fibre surfaces, Pattern Recognition, 48(11) (2015) 3324-3332.

DOI: 10.1016/j.patcog.2014.11.009

Google Scholar

[16] B. Rönz, H.G. Strohe (Hrsg.), Lexikon Statistik, Gabler, Wiesbaden, (1994).

Google Scholar

[17] P.P. Eckstein, Repetitorium Statistik, Deskriptive Statistik - Stochastik - Induktive Statistik, Springer Gabler, Wiesbaden, (2014).

DOI: 10.1007/978-3-658-05748-0

Google Scholar