[1]
R. Halama, J. Sedlák, M. Šofer, Phenomenological Modelling of Cyclic Plasticity, in: P. Miidla (Ed.), Numerical Modelling, InTech, Rijeka, 2012, pp.329-354.
Google Scholar
[2]
P. Kopas, M. Sága, V. Baniari, M. Vaško, M. Handrik, A plastic strain and stress analysis of bending and torsion fatigue specimens in the low-cycle fatigue region using the finite element methods. Procedia Engineering 177 (2017) 526-531.
DOI: 10.1016/j.proeng.2017.02.256
Google Scholar
[3]
M. Sága, P. Kopas, M. Uhríčik, Modeling and experimental analysis of the aluminium alloy fatigue damage in the case of bending - torsion loading. Procedia Engineering 48 (2012) 599-606.
DOI: 10.1016/j.proeng.2012.09.559
Google Scholar
[4]
X. Chen, X. Chen, D. Yu, B. Gao, Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping. International Journal of Pressure Vessels and Piping 101 (2013) 113-142.
DOI: 10.1016/j.ijpvp.2012.10.008
Google Scholar
[5]
X.H. Chen, X. Chen, Numerical simulations of pressurized elbow under reversed in-plane bending. Advanced Materials Research 785-786 (2013) 16-19.
DOI: 10.4028/www.scientific.net/amr.785-786.16
Google Scholar
[6]
E. Corona, T. Hassan, S. Kyriakides, On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories. International Journal of Plasticity 12 (1996) 117-145.
DOI: 10.1016/s0749-6419(95)00047-x
Google Scholar
[7]
T. Hassan, S. Kyriakides, Ratcheting of cyclically hardening and softening materials: i. uniaxial behavior. International Journal of Plasticity 10 (1994) 149-184.
DOI: 10.1016/0749-6419(94)90033-7
Google Scholar
[8]
L. Écsi, P. Élesztos, R. Jančo, An alternative J2 material model with isotropic hardening for coupled thermal-structural finite-strain elastoplastic analyses. In: MATEC Web of Conferences, Volume 157, 14 March 2018, Article number 06003, 22nd Slovak-Polish Scientific Conference on Machine Modelling and Simulations, MMS 2017; Sklene Teplice; Slovakia; 5 September 2017 through 8 September (2017).
DOI: 10.1051/matecconf/201815706003
Google Scholar
[9]
J.L. Chaboche, K. Dang Van, G. Cordier, Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, In: Proceedings of the 5th International Conference on Structural Mechanics in Reactor Technology, Division L11/3, Berlin, 13.-17. August 1979, Ed. Jaeger A and Boley B A. Berlin: Bundesanstalt fűr Materialprűfung, pp.1-10.
Google Scholar
[10]
P.J. Armstrong, C.O. Frederick, A Mathematical Representation of the Multiaxial Bauschinger Effect, G.E.G.B. Report RD/B/N, 731, (1966).
Google Scholar
[11]
X. Chen, R. Jiao, Modified kinematic hardening rule for multiaxial ratchetting prediction. International Journal of Plasticity 20 (2004) 871–98.
DOI: 10.1016/j.ijplas.2003.05.005
Google Scholar
[12]
S. Jiang, H. Sehitoglu, Modeling of cyclic ratchetting plasticity, part I: development of constitutive relations. Journal of Applied Mechanics 63 (1996) 720-725.
DOI: 10.1115/1.2823355
Google Scholar
[13]
R. Halama, M. Fusek, M. Šofer, Z. Poruba, P. Matušek, R. Fajkoš, Ratcheting behavior of class C wheel steel and its prediction by modified AbdelKarim-Ohno Model, In: Proceedings of the 10th International Conference on Contact Mechanics CM2015, Colorado Springs, Colorado, USA, August 30 – September 3, (2015).
DOI: 10.1016/j.ijfatigue.2016.04.033
Google Scholar
[14]
D. Agius, K.I. Kourousis, C. Wallbrink, W. Hu, C.H. Wang, Y.F. Dafalias, Aluminum alloy 7075 ratcheting and plastic shakedown evaluation with the multiplicative Armstrong-Frederick Model. AIAA Journal 55 No.7 (2017) 2461-2470.
DOI: 10.2514/1.j055833
Google Scholar
[15]
R. Halama, A. Markopoulos, F. Fojtík, M. Fusek, Z. Poruba, Effect of stress amplitude on uniaxial ratcheting of AA2124T851. Materialwissenschaft und Werkstofftechnik 48 (2017) 1–6.
DOI: 10.1002/mawe.201600748
Google Scholar
[16]
R. Halama, M. Šofer, F. Fojtík, A. Markopoulos, Testing and modeling of uniaxial and multiaxial stress-strain behaviour of R7T wheel steel. In: Conference Proceeding of EAN2014-52nd International Conference on Experimental Stress Analysis, Marianske Lazne, Czech Republic, 2 June 2014 through 5 June (2014).
DOI: 10.4028/www.scientific.net/amm.732.91
Google Scholar
[17]
D.L. McDowell, Stress state dependence of cyclic ratchetting behaviour of two rail steels. International Journal of Plasticity 11 (1995) 397-421.
DOI: 10.1016/s0749-6419(95)00005-4
Google Scholar
[18]
R. Halama, A. Markopoulos, M. Šofer, Z. Poruba, P. Matušek, Cyclic plastic properties of class C steel emphasizing on ratcheting: testing and modelling. Journal of Mechanical Engineering 65 No.1 (2015) 21-26.
DOI: 10.1515/scjme-2016-0002
Google Scholar
[19]
M. Abdel-Karim, N. Ohno, Kinematic hardening model suitable for ratchetting with steady-state. International Journal of Plasticity 16 (2000) 225-240.
DOI: 10.1016/s0749-6419(99)00052-2
Google Scholar
[20]
S. Calloch, D. Marquis, Triaxial tension-compression tests for multiaxial cyclic plasticity. International Journal of Plasticity 15 (1999) 521-549.
DOI: 10.1016/s0749-6419(99)00005-4
Google Scholar