FE Prediction and Extrapolation of Multiaxial Ratcheting for R7T Steel

Article Preview

Abstract:

Wear of materials in rail/wheel industry is closely related to the cyclic creep. This contribution presents main results of experimental testing on R7T wheel steel. The cyclic creep is investigated under non-proportional loading conditions simulating a line rolling contact case. McDowell extrapolation was successfully applied to the calculation of twist. Cyclic material model MAKOC and MAKOC with memory surface were used for cyclic creep prediction. The plasticity model is based on AbdelKarim-Ohno kinematic hardening and Calloch isotropic hardening rules. Second material model was extended with Jiang-Sehitoglu memory surface, which is introduced in stress space. Material models were successfully used for predicting accumulation of shear strain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Halama, J. Sedlák, M. Šofer, Phenomenological Modelling of Cyclic Plasticity, in: P. Miidla (Ed.), Numerical Modelling, InTech, Rijeka, 2012, pp.329-354.

Google Scholar

[2] P. Kopas, M. Sága, V. Baniari, M. Vaško, M. Handrik, A plastic strain and stress analysis of bending and torsion fatigue specimens in the low-cycle fatigue region using the finite element methods. Procedia Engineering 177 (2017) 526-531.

DOI: 10.1016/j.proeng.2017.02.256

Google Scholar

[3] M. Sága, P. Kopas, M. Uhríčik, Modeling and experimental analysis of the aluminium alloy fatigue damage in the case of bending - torsion loading. Procedia Engineering 48 (2012) 599-606.

DOI: 10.1016/j.proeng.2012.09.559

Google Scholar

[4] X. Chen, X. Chen, D. Yu, B. Gao, Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping. International Journal of Pressure Vessels and Piping 101 (2013) 113-142.

DOI: 10.1016/j.ijpvp.2012.10.008

Google Scholar

[5] X.H. Chen, X. Chen, Numerical simulations of pressurized elbow under reversed in-plane bending. Advanced Materials Research 785-786 (2013) 16-19.

DOI: 10.4028/www.scientific.net/amr.785-786.16

Google Scholar

[6] E. Corona, T. Hassan, S. Kyriakides, On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories. International Journal of Plasticity 12 (1996) 117-145.

DOI: 10.1016/s0749-6419(95)00047-x

Google Scholar

[7] T. Hassan, S. Kyriakides, Ratcheting of cyclically hardening and softening materials: i. uniaxial behavior. International Journal of Plasticity 10 (1994) 149-184.

DOI: 10.1016/0749-6419(94)90033-7

Google Scholar

[8] L. Écsi, P. Élesztos, R. Jančo, An alternative J2 material model with isotropic hardening for coupled thermal-structural finite-strain elastoplastic analyses. In: MATEC Web of Conferences, Volume 157, 14 March 2018, Article number 06003, 22nd Slovak-Polish Scientific Conference on Machine Modelling and Simulations, MMS 2017; Sklene Teplice; Slovakia; 5 September 2017 through 8 September (2017).

DOI: 10.1051/matecconf/201815706003

Google Scholar

[9] J.L. Chaboche, K. Dang Van, G. Cordier, Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, In: Proceedings of the 5th International Conference on Structural Mechanics in Reactor Technology, Division L11/3, Berlin, 13.-17. August 1979, Ed. Jaeger A and Boley B A. Berlin: Bundesanstalt fűr Materialprűfung, pp.1-10.

Google Scholar

[10] P.J. Armstrong, C.O. Frederick, A Mathematical Representation of the Multiaxial Bauschinger Effect, G.E.G.B. Report RD/B/N, 731, (1966).

Google Scholar

[11] X. Chen, R. Jiao, Modified kinematic hardening rule for multiaxial ratchetting prediction. International Journal of Plasticity 20 (2004) 871–98.

DOI: 10.1016/j.ijplas.2003.05.005

Google Scholar

[12] S. Jiang, H. Sehitoglu, Modeling of cyclic ratchetting plasticity, part I: development of constitutive relations. Journal of Applied Mechanics 63 (1996) 720-725.

DOI: 10.1115/1.2823355

Google Scholar

[13] R. Halama, M. Fusek, M. Šofer, Z. Poruba, P. Matušek, R. Fajkoš, Ratcheting behavior of class C wheel steel and its prediction by modified AbdelKarim-Ohno Model, In: Proceedings of the 10th International Conference on Contact Mechanics CM2015, Colorado Springs, Colorado, USA, August 30 – September 3, (2015).

DOI: 10.1016/j.ijfatigue.2016.04.033

Google Scholar

[14] D. Agius, K.I. Kourousis, C. Wallbrink, W. Hu, C.H. Wang, Y.F. Dafalias, Aluminum alloy 7075 ratcheting and plastic shakedown evaluation with the multiplicative Armstrong-Frederick Model. AIAA Journal 55 No.7 (2017) 2461-2470.

DOI: 10.2514/1.j055833

Google Scholar

[15] R. Halama, A. Markopoulos, F. Fojtík, M. Fusek, Z. Poruba, Effect of stress amplitude on uniaxial ratcheting of AA2124T851. Materialwissenschaft und Werkstofftechnik 48 (2017) 1–6.

DOI: 10.1002/mawe.201600748

Google Scholar

[16] R. Halama, M. Šofer, F. Fojtík, A. Markopoulos, Testing and modeling of uniaxial and multiaxial stress-strain behaviour of R7T wheel steel. In: Conference Proceeding of EAN2014-52nd International Conference on Experimental Stress Analysis, Marianske Lazne, Czech Republic, 2 June 2014 through 5 June (2014).

DOI: 10.4028/www.scientific.net/amm.732.91

Google Scholar

[17] D.L. McDowell, Stress state dependence of cyclic ratchetting behaviour of two rail steels. International Journal of Plasticity 11 (1995) 397-421.

DOI: 10.1016/s0749-6419(95)00005-4

Google Scholar

[18] R. Halama, A. Markopoulos, M. Šofer, Z. Poruba, P. Matušek, Cyclic plastic properties of class C steel emphasizing on ratcheting: testing and modelling. Journal of Mechanical Engineering 65 No.1 (2015) 21-26.

DOI: 10.1515/scjme-2016-0002

Google Scholar

[19] M. Abdel-Karim, N. Ohno, Kinematic hardening model suitable for ratchetting with steady-state. International Journal of Plasticity 16 (2000) 225-240.

DOI: 10.1016/s0749-6419(99)00052-2

Google Scholar

[20] S. Calloch, D. Marquis, Triaxial tension-compression tests for multiaxial cyclic plasticity. International Journal of Plasticity 15 (1999) 521-549.

DOI: 10.1016/s0749-6419(99)00005-4

Google Scholar