Anomalous Twinning as the Macroscopic Deformation Mechanism for AZ31 Magnesium Alloy

Article Preview

Abstract:

In order to study the plastic deformation mechanism of AZ31 magnesium alloy, in situ texture measurement during uniaxial tensile deformation is conducted by using neutron diffraction. The specimen is prepared from a rolled sheet so that the deformation axis is parallel to the rolling direction. By increasing strain, the alignment of <10-10> along the tensile axis is strengthened, which is due to the activation of the prism slip system. The basal pole concentration at the prior sheet normal direction is slightly decreased by the deformation and the new texture component is formed at the transvers direction. This can be understood by activation of the {10-12} tension twinning. These results indicate that the tension twinning plays an important role even when the tensile deformation is applied parallel to the basal plane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-100

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ali, D. Qiu, B. Jiang, F. Pan, M.-X. Zhang: Current research progress in grain refinement of cast magnesium alloys: A review article, J. Alloys Compd., 619, (2015) 639-651.

DOI: 10.1016/j.jallcom.2014.09.061

Google Scholar

[2] M.R. Barnett: Twinning and the ductility of magnesium alloys, Materials Science and Engineering: A, 464, (2007) 8-16.

Google Scholar

[3] M.R. Barnett: Twinning and the ductility of magnesium alloys, Materials Science and Engineering: A, 464, (2007) 1-7.

Google Scholar

[4] Y. Onuki, K. Hara, H. Utsunomiya, J.A. Szpunar: High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures, J. Mater. Eng. Perform., 24, (2014) 972-985.

DOI: 10.1007/s11665-014-1318-8

Google Scholar

[5] R. Gehrmann, M.M. Frommert, G. Gottstein: Texture effects on plastic deformation of magnesium, Materials Science and Engineering: A, 395, (2005) 338-349.

DOI: 10.1016/j.msea.2005.01.002

Google Scholar

[6] K. Hazeli, J. Cuadra, P.A. Vanniamparambil, A. Kontsos: In situ identification of twin-related bands near yielding in a magnesium alloy, Scripta Mater., 68, (2013) 83-86.

DOI: 10.1016/j.scriptamat.2012.09.009

Google Scholar

[7] A. Chapuis, J.H. Driver: Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 59, (2011) 1986-1994.

DOI: 10.1016/j.actamat.2010.11.064

Google Scholar

[8] H. Yoshinaga, R. Horiuchi: Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis, Transactions of the Japan Institute of Metals, 4, (1963) 1-8.

DOI: 10.2320/matertrans1960.4.1

Google Scholar

[9] H. Yoshinaga, R. Horiuchi: On the Nonbasal Slip in Magnesium Crystals, Transactions of the Japan Institute of Metals, 5, (1964) 14-21.

DOI: 10.2320/matertrans1960.5.14

Google Scholar

[10] J. Koike, Y. Sato, D. Ando: Origin of the Anomalous {10\\bar12} Twinning during Tensile Deformation of Mg Alloy Sheet, Mater. Trans., 49, (2008) 2792-2800.

DOI: 10.2320/matertrans.mra2008283

Google Scholar

[11] T. Ishigaki, A. Hoshikawa, M. Yonemura, et al.: IBARAKI materials design diffractometer (iMATERIA)—Versatile neutron diffractometer at J-PARC, Nucl. Instrum. Meth. Phys. Res. A, 600, (2009) 189-191.

DOI: 10.1016/j.nima.2008.11.137

Google Scholar

[12] L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, J.W. Richardson: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra, J. Appl. Phys., 81, (1997) 594-600.

DOI: 10.1063/1.364220

Google Scholar

[13] Y. Onuki, A. Hoshikawa, S. Nishino, S. Sato, T. Ishigaki: Rietveld Texture Analysis for Metals Having Hexagonal Close-Packed Phase by Using Time-of-Flight Neutron Diffraction at iMATERIA, Adv. Eng. Mater., 20, (2018).

DOI: 10.1002/adem.201700227

Google Scholar

[14] Y. Onuki, A. Hoshikawa, S. Sato, T. Ishigaki, T. Tomida: Quantitative phase fraction analysis of steel combined with texture analysis using time-of-flight neutron diffraction, J. Mater. Sci., 52, (2017) 11643-11658.

DOI: 10.1007/s10853-017-1309-x

Google Scholar

[15] Y. Onuki, A. Hoshikawa, S. Sato, et al.: Rapid measurement scheme for texture in cubic metallic materials using time-of-flight neutron diffraction at iMATERIA, J. Appl. Crystallogr., 49, (2016) 1579-1584.

DOI: 10.1107/s160057671601164x

Google Scholar

[16] R. Hielscher, H. Schaeben: A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallogr., 41, (2008) 1024-1037.

DOI: 10.1107/s0021889808030112

Google Scholar

[17] N.C. Popa, D. Balzar, S.C. Vogel: Elastic macro strain and stress determination by powder diffraction: spherical harmonics analysis starting from the Voigt model, J. Appl. Crystallogr., 47, (2013) 154-159.

DOI: 10.1107/s1600576713029208

Google Scholar

[18] G.K. Williamson, W.H. Hall: X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1, (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[19] J.E. Bailey, P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver, Philos. Mag., 5, (1960) 485-497.

DOI: 10.1080/14786436008238300

Google Scholar

[20] O. Grässel, G. Frommeyer, C. Derder, H. Hofmann: Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels, Le Journal de Physique IV, 07, (1997) C5-383-C385-388.

DOI: 10.1051/jp4:1997560

Google Scholar

[21] Y. Onuki, K. Hara, H. Utsunomiya, J. Szpunar (2015) IOP Conference Series: Materials Science and EngineeringIOP Publishing.

Google Scholar

[22] Y. Onuki, A. Hoshikawa, S. Sato, T. Ishigaki: Deformation mechanism of AZ31 magnesium alloy at room temperature studied by macro and micro texture measurements, Journal of The Japan Institute of Light Metals, 66, (2016) 628-633.

DOI: 10.2464/jilm.66.628

Google Scholar