Influence of Cold Spray Nozzle Displacement Strategy on Microstructure and Mechanical Properties of Cu/SiC Composites Coating

Article Preview

Abstract:

In this work an influence of cold spray nozzle displacement parameters on the properties of copper-silicon carbide cold spray deposits is considered. In particular the influence of nozzle traverse speed and distance between deposited tracks on the coating porosity and behavior during compressive tests was analyzed. It was shown that cold spraying at low nozzle traverse speed leads to formation of thick tracks with quasi-triangular cross-section. As a consequence, the particle impact angle on the sides of spraying track increases that. Thus, the particle deformation at impact on the track periphery becomes insufficient and local porosity value rises. Increase of nozzle traverse speed allows increasing coating density and mechanical properties due to amelioration of particle deformation conditions. Compressive tests revealed significant anisotropy of mechanical properties of copper-silicon carbide cold spray deposits. In particular, compressive strength measured in vertical direction (perpendicular to the substrate) was significantly higher than one measured in horizontal plane (parallel to substrate). This anisotropy could be explained by the orientation of particle deformation pattern during impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol. 7 (1998) 205-212.

DOI: 10.1361/105996398770350945

Google Scholar

[2] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov and V. Fomin, Cold Spray Technology, Elsevier Science, Amsterdam, (2006).

DOI: 10.1016/b978-008045155-8/50003-x

Google Scholar

[3] V. Champagne, The Cold Spray Materials Deposition Process – Fundamentals and Applications, Elsevier Science, Amsterdam, (2007).

Google Scholar

[4] H. Assadi, H. Kreye, F. Gärtner and T. Klassen, Cold spraying – a materials perspective, Acta Mater. 116 (2016) 382-407.

DOI: 10.1016/j.actamat.2016.06.034

Google Scholar

[5] H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding mechanism in cold gas spraying, Acta Mater. 15 (2003) 4379-4394.

DOI: 10.1016/s1359-6454(03)00274-x

Google Scholar

[6] A. Sova, S. Grigoriev, A. Okunkova and I. Smurov, Potential of cold gas dynamic spray as additive manufacturing technology, International Journal of Advanced Manufacturing Technology 69 (2013) 2269-2278.

DOI: 10.1007/s00170-013-5166-8

Google Scholar

[7] R. N. Raoelison, C. Verdy, and H. Liao, Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials & Design, 133 (2017) 266-287.

DOI: 10.1016/j.matdes.2017.07.067

Google Scholar

[8] F. Ortega, A. Sova, MD. Monzón, MD. Marrero, AN. Benítez and P. Bertrand, Combination of electroforming and cold gas dynamic spray for fabrication of rotational moulds: feasibility study, The International Journal of Advanced Manufacturing Technology 76 (2015) 1243-1251.

DOI: 10.1007/s00170-014-6331-4

Google Scholar

[9] A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich and M.M. Shushpanov, Gas-dynamic spraying method for applying a coating (US 5302414): Patent; (1994).

Google Scholar

[10] S. Yin, Y.C. Xie, J. Cizek, E.J. Ekoi, T. Hussain, D.P. Dowling and R. Lupoi, Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism, Compos. Part B Eng. 113 (2017) 44-54.

DOI: 10.1016/j.compositesb.2017.01.009

Google Scholar

[11] P. Sudharshan Phani, V. Vishnukanthan and G. Sundararajan, Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings, Acta Materialia 55 (2007) 4741-4751.

DOI: 10.1016/j.actamat.2007.04.044

Google Scholar

[12] K. Ogawa, K. Ito, K. Ichimura, Y. Ichikawa, S. Ohno, and N. Onda, Characterization of low pressure cold-sprayed aluminum coatings, J. Therm. Spray Technol., 17 (2008) 728-735.

DOI: 10.1007/s11666-008-9254-5

Google Scholar

[13] Y. T. R. Lee, H. Ashrafizadeh, G. Fisher and A. McDonald, Effect of type of reinforcing particles on the deposition efficiency and wear resistance of low-pressure cold-sprayed metal matrix composite coatings, Surf. Coat. Technol., 324 (2017) 190-200.

DOI: 10.1016/j.surfcoat.2017.05.057

Google Scholar

[14] R. Fernandez and B. Jodoin, Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Technol., 27 (2018) 603-623.

DOI: 10.1007/s11666-018-0702-6

Google Scholar

[15] H. Koivuluoto and P. Vuoristo, Structural analysis of cold-sprayed nickel-based metallic and metallic ceramic coatings, J. Therm. Spray Technol., 19 (2010) 975-989.

DOI: 10.1007/s11666-010-9481-4

Google Scholar

[16] K. I. Triantou, D. I. Pantelis, V. Guipont and M. Jeandin, Microstructure and tribological behavior of copper and composite copper+alumina cold sprayed coatings for various alumina contents, Wear, 336-337 (2015) 96-107.

DOI: 10.1016/j.wear.2015.05.003

Google Scholar

[17] Y. Wang, B. Normand, N. Mary, M. Yu, and H. Liao, Microstructure and corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings, Surf. Coat. Technol., 251 (2014) 264-275.

DOI: 10.1016/j.surfcoat.2014.04.036

Google Scholar

[18] Information on https://www.andra.fr/download/site-principal/document/innovation/coconut_ fiches-demantelement_web.pdf.

Google Scholar

[19] F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr and M. Koçak, Mechanical properties of cold-sprayed and thermally sprayed copper coatings, surf. Coat. Technol., 200 (2006) 6770-6782.

DOI: 10.1016/j.surfcoat.2005.10.007

Google Scholar