Enhancement in Fatigue Life of Ti-13Nb-13Zr Alloy through Ultrasonic Shot Peening

Article Preview

Abstract:

β-Ti (Ti–13Nb–13Zr) alloy was subjected to ultrasonic shotpeening (USSP) and a nanocrystalline layer of ~60 µm thickness was developed on the metastable Ti-13-Nb-13Zr alloy. In this investigation, the surface hardening and low cycle fatigue (LCF) behavior of the alloy were studied after USSP treatment. Compared to the un-shotpeened samples, the shotpeened specimens exhibit high surface hardness and an enhancement in fatigue life. A notable impact of USSP on the fatigue crack initiation and growth of the alloy was also observed. The results show that the crack initiation at free-surface was suppressed due to the formation of a nanograined microstructure and fatigue crack initiation site shifts from surface to inside of the material. Further, the microstructural analysis proves that the nanograin formation and compressive stresses imparted by ultrasonic shot peening treatment are helpful in significant improvement of fatigue life.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-128

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Manivasagam, T. Lee, E. Mathew, S. Rajaraman, A. Singh, C.S. Lee, Tribological and corrosion behaviors of warm- and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions, Int. J. Nanomedicine 10 (2015) 207.

DOI: 10.2147/ijn.s79996

Google Scholar

[2] L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation, Mater. Charact. 92 (2014) 1-14.

DOI: 10.1016/j.matchar.2014.02.003

Google Scholar

[3] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later, Jom. 68 (2016) 1216–1226.

DOI: 10.1007/s11837-016-1820-6

Google Scholar

[4] S. Liu, S.Y. Gao, Y.F. Zhou, X.L. Xing, X.R. Hou, Y.L. Yang, Q.X. Yang, A research on the microstructure evolution of austenite stainless steel by surface mechanical attrition treatment, Mater. Sci. Eng. A. 617 (2014) 127–138.

DOI: 10.1016/j.msea.2014.08.049

Google Scholar

[5] M.A. Vasylyev, S.P. Chenakin, L.F. Yatsenko, Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy, Acta Mater. 103 (2016) 761-774.

DOI: 10.1016/j.actamat.2015.10.041

Google Scholar

[6] M.A. Vasylyev, S.P. Chenakin, L.F. Yatsenko, Nitridation of Ti-6Al-4V alloy under ultrasonic impact treatment in liquid nitrogen, Acta Mater. 60 (2012) 6223-6233.

DOI: 10.1016/j.actamat.2012.08.006

Google Scholar

[7] S. Anand Kumar, R. Sundar, S. Ganesh Sundara Raman, H. Kumar, R. Kaul, K. Ranganathan, S.M. Oak, L.M. Kukreja, K.S. Bindra, Influence of laser peening on microstructure and fatigue lives of Ti-6Al-4V, Trans. Nonferrous Met. Soc. China 24 (2014) 3111-3117.

DOI: 10.1016/s1003-6326(14)63449-x

Google Scholar

[8] S. Kumar, K. Chattopadhyay, V. Singh, Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy, J. Alloys Compd. 724 (2017) 187–197.

DOI: 10.1016/j.jallcom.2017.07.014

Google Scholar

[9] J. Marteau, M. Bigerelle, Relation between surface hardening and roughness induced by ultrasonic shot peening, Tribol. Int. 83 (2015) 105-113.

DOI: 10.1016/j.triboint.2014.11.006

Google Scholar

[10] X.J. Cao, Y.S. Pyoun, R. Murakami, Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification, Appl. Surf. Sci. 256 (2010) 6297–6303.

DOI: 10.1016/j.apsusc.2010.04.007

Google Scholar

[11] T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scr. Mater. 49 (2003) 675–680.

DOI: 10.1016/s1359-6462(03)00393-2

Google Scholar

[12] H. Mughrabi, H.W. Höppel, M. Kautz, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scr. Mater. 51 (2004) 807–812.

DOI: 10.1016/j.scriptamat.2004.05.012

Google Scholar

[13] M. Long, H.J. Rack, Titanium alloys in total joint replacement - A materials science perspective, Biomaterials. 19 (1998) 1621–1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[14] S.G. Steinemann, P.A. Mäusli, S. Szmukler-Moncler, M. Semlitsch, O. Pohler, H.E. Hintermann, S.M. Perren, Beta-titanium alloy for surgical implants, Seventh world conference on titanium, San Diego, USA, (1990).

Google Scholar

[15] M. Geetha, A.K. Singh, K. Muraleedharan, A.K. Gogia, R. Asokamani, Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy, 329 (2001) 264–271.

DOI: 10.1016/s0925-8388(01)01604-8

Google Scholar

[16] M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A. 243 (1998) 231–236.

Google Scholar

[17] M.A. Khan, R.L. Williams, D.F. Williams, The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions, Biomaterials. 20 (1999) 631–637.

DOI: 10.1016/s0142-9612(98)00217-8

Google Scholar

[18] C.A.R.P. Baptista, S.G. Schneider, E.B. Taddei, H.M. Da Silva, Fatigue behavior of arc melted Ti-13Nb-13Zr alloy, Int. J. Fatigue. 26 (2004) 967–973.

DOI: 10.1016/j.ijfatigue.2004.01.011

Google Scholar

[19] C.W. Lin, C.P. Ju, J.H. Chern Lin, A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys, Biomaterials. 26 (2005) 2899–2907.

DOI: 10.1016/j.biomaterials.2004.09.007

Google Scholar

[20] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11 (1978) 102–113.

DOI: 10.1107/s0021889878012844

Google Scholar

[21] L. Jin, W. Cui, X. Song, G. Liu, L. Zhou, Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 2529–2535.

DOI: 10.1016/s1003-6326(14)63379-3

Google Scholar

[22] C. Zhang, W. Song, F. Li, X. Zhao, Y. Wang, G. Xiao, Microstructure and corrosion properties of Ti-6Al-4V alloy by ultrasonic shot peening, Int. J. Electrochem. Sci. 10 (2015) 9167–9178.

Google Scholar

[23] M. Wen, G. Liu, J. Gu, W. Guan, J. Lu, Dislocation evolution in titanium during surface severe plastic deformation, Appl. Surf. Sci. 255 (2009) 6097–6102.

DOI: 10.1016/j.apsusc.2009.01.048

Google Scholar

[24] X. Nie, W. He, L. Zhou, Q. Li, X. Wang, Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance, Mater. Sci. Eng. A. 594 (2014) 161–167.

DOI: 10.1016/j.msea.2013.11.073

Google Scholar

[25] L. Yang, N.R. Tao, K. Lu, L. Lu, Enhanced fatigue resistance of Cu with a gradient nanograined surface layer, Scr. Mater. 68 (2013) 801–804.

DOI: 10.1016/j.scriptamat.2013.01.031

Google Scholar

[26] Q. Wang, Q. Sun, L. Xiao, J. Sun, Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium, J. Mater. Eng. Perform. 25 (2016) 241–249.

DOI: 10.1007/s11665-015-1819-0

Google Scholar

[27] H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Mater. 87 (2015) 150–160.

DOI: 10.1016/j.actamat.2014.12.057

Google Scholar