Catalytic Hydrogenation of Acetone to Isopropanol on Bimetallic Silver-Gold Nanocatalyst

Article Preview

Abstract:

Silver-gold alloy catalyst for ketones hydrogenation in liquid-phase using NaBH4 as hydrogen source is reported. AgAu alloy nanoparticles are synthesized from common inorganic precursors and mild experimental conditions. To favour the dispersion of the sample in the mixed-aqueous reaction solution a ligand exchange with citric acid was promoted. This citric acid modified AgAu catalyst, thanks to the synergistic effect of Au and Ag, allows for the selective hydrogenation of ketones with to maximum isopropanol yields of 99.7 % within 8 min and shows an excellent reusability after 7 run.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-103

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. C. Liang, A. L. Juliard, Reduction of Oxygen at the Platinum Electrode, Nature 207 (1965) 629–630.

DOI: 10.1038/207629a0

Google Scholar

[2] H. You, S. Yang, B. Ding, H. Yang, Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications Chem. Soc. Rev. 42 (2013) 2880–2904.

DOI: 10.1039/c2cs35319a

Google Scholar

[3] J. Wu, P. Li, Y.T. Pan, S. Warren, X. Yin, H. Yang, Surface lattice-engineered bimetallic nanoparticles and their catalytic properties, Chem. Soc. Rev. 41 (2012) 8066–8074.

DOI: 10.1039/c2cs35189g

Google Scholar

[4] F. Gao, D.W. Goodman, Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles, Chem. Soc. Rev. 41 (2012) 8009– 8020.

DOI: 10.1039/c2cs35160a

Google Scholar

[5] Y. Zhao, C. Ye, W. Liu, R. Chen, X. Jiang, Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application, Angew. Chem. Int. Ed. 53 (2014) 8127–8131.

DOI: 10.1002/anie.201401035

Google Scholar

[6] A. Rahman, Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach, Bull. Chem. React. 5 (2010) 113-126.

DOI: 10.9767/bcrec.5.2.798.113-126

Google Scholar

[7] A. Balouch, A. A. Umar, A. A. Shah, M. M. Salleh, M. Oyama, Efficient Heterogeneous Catalytic Hydrogenation of Acetone to Isopropanol on Semihollow and Porous Palladium Nanocatalyst, ACS Appl. Mater. Interfaces 5 (2013) 199843-199849.

DOI: 10.1021/am403087m

Google Scholar

[8] Y. Duan, M. Xu, X. Huai, High temperature catalytic hydrogenation of acetone over Raney Ni for chemical heat pump, J. Therm. Sci. 23 (2014) 85–90.

DOI: 10.1007/s11630-014-0680-z

Google Scholar

[9] J. Zhao, R. Jin, Heterogeneous catalysis by gold and gold-based bimetal nanoclusters, Nano Today 18 (2018) 86-102.

DOI: 10.1016/j.nantod.2017.12.009

Google Scholar

[10] T. Mitsudome, K. Kaneda, Gold nanoparticle catalysts for selective hydrogenations, Green Chem. 15 (2013) 2636-2654.

DOI: 10.1039/c3gc41360h

Google Scholar

[11] S. Wang, H. Huang, S. Tsareva, C. Bruneau, C. Fischmeister, Silver‐Catalyzed Hydrogenation of Ketones under Mild Conditions, Adv. Synth. Catal. 361 (2019) 786-790.

DOI: 10.1002/adsc.201801523

Google Scholar

[12] L. V. Moskaleva, S. Rohe, A. Wittstock, V. Zielasek, T. Kluner, K. M. Neyman, M. Baumer, Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold, Phys. Chem. Chem. Phys. 13 (2011) 4529-4539.

DOI: 10.1039/c0cp02372h

Google Scholar

[13] M. Sarno, E. Ponticorvo, Continuous flow HER and MOR evaluation of a new Pt/Pd/Co nano electrocatalyst, Appl. Surf. Sci. 459 (2018) 105-113.

DOI: 10.1016/j.apsusc.2018.07.209

Google Scholar

[14] M. Sarno, E. Ponticorvo, High hydrogen production rate on RuS2@MoS2 hybrid nanocatalyst by PEM electrolysis. Int. J. Hydrogen Energy 44 (2019) 4398-4405.

DOI: 10.1016/j.ijhydene.2018.10.229

Google Scholar

[15] M. Sarno, M. Iuliano, Active biocatalyst for biodiesel production from spent coffee ground, Bioresource Technology 266 (2018) 431–438.

DOI: 10.1016/j.biortech.2018.06.108

Google Scholar