[1]
T.Masaki, K.Kobayashi, HIGH TOUGHENED PSZ(PARTIALLY STABILISED ZIRCONIA). Advanced Ceramics Oxford, Oxford University Press, (1988) 210-226.
Google Scholar
[2]
S.Lawson, C.Gill, G.P. Dransfield, The effects of copper and iron oxide additions on the sintering and properties of Y-TZP. Journal of materials science, 30(12), (1995) 3057-3060.
DOI: 10.1007/bf01209217
Google Scholar
[3]
I.Birkby, R.Stevens, Applications of zirconia ceramics. In Key Engineering Materials 122, Trans Tech Publications. (1996) 527-552.
DOI: 10.4028/www.scientific.net/kem.122-124.527
Google Scholar
[4]
R. Singh, C.Gill, S.Lawson G.P. Dransfield, Sintering, microstructure and mechanical properties of commercial Y-TZPs. Journal of materials science, 31(22), (1996) 6055-6062.
DOI: 10.1007/bf01152158
Google Scholar
[5]
S. Sivakumar, R.Singh, T.H. Loong, Y.L. Chuan, K.C. Leong, Effect of Short Time Sintering on the Mechanical Properties of Undoped Zirconia Ceramics. Applied Mechanics & Materials, (2014) 629.
DOI: 10.4028/www.scientific.net/amm.629.420
Google Scholar
[6]
S. Sivakumar, H.L. Teow, R. Singh, A. Niakan, N. Mase, The effect of iron oxide on the mechanical and ageing properties of Y-TZP ceramic. In Key Engineering Materials 701, Trans Tech Publications. (2016) 225-229.
DOI: 10.4028/www.scientific.net/kem.701.225
Google Scholar
[7]
S.Sivakumar, S.Ramesh K.L. Chin, C.Y. Teng, Effect of sintering profiles on the properties and ageing resistance of Y-TZP ceramic. International Journal of Automotive and Mechanical Engineering, 4, (2011) 405-413.
DOI: 10.15282/ijame.4.2011.3.0033
Google Scholar
[8]
M. Amiriyan, M.Satgunam, S.Sivakumar, S. Ramesh, R.Tolouei,, Sinterability and mechanical properties of MnO2-doped Y-TZP: The effects of holding time variations. In Applied Mechanics and Materials.110, (2014) 1284-1288.
DOI: 10.4028/www.scientific.net/amm.110-116.1284
Google Scholar
[9]
S.Sivanesan, R.Singh, C.K. Leong, The Governance of Sintering Regimes on the Properties and Ageing Resistance of Y-TZP Ceramic. In Advanced Materials Research Trans Tech Publications.545, (2011) 81-87.
DOI: 10.4028/www.scientific.net/amr.545.81
Google Scholar
[10]
T.Koyama, A. Nishiyama, K. Niihara,, Effect of grain morphology and grain size on the mechanical properties of Al 2 O 3 ceramics. Journal of materials science, 29(15) (2014) 3949-3954.
DOI: 10.1007/bf00355953
Google Scholar
[11]
S. Ramesh, L.F. Siah, A.N. Azmah, Sintering behaviour of slip-cast Al2O3–Y-TZP composites. Journal of materials science, 35(21), (2000) 5509-5515.
DOI: 10.1023/a:1004837516291
Google Scholar
[12]
N. Claussen, Fracture toughness of Al2O3 with an unstabilized ZrO2 Dispersed phase. Journal of the American Ceramic Society, 59(1‐2),(1976) 49-51.
DOI: 10.1111/j.1151-2916.1976.tb09386.x
Google Scholar
[13]
A.N. Pilyankevich, N.Claussen, Toughening of BN by stress-induced phase transformation. Materials Research Bulletin, 13(5), (1978) 413-417.
DOI: 10.1016/0025-5408(78)90147-2
Google Scholar
[14]
R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel?. Nature, 258(5537), (1975) 703.
DOI: 10.1038/258703a0
Google Scholar
[15]
F.F. Lange, Transformation toughening. Journal of Materials Science, 17(1), (1982) 225-234.
Google Scholar
[16]
R.F. Pabst, J. Steeb, N. Claussen, Microcracking in a process zone and its relation to continuum fracture mechanics. Crack Growth and Microstructure, (1978) 821-833.
DOI: 10.1007/978-1-4615-7020-2_18
Google Scholar
[17]
K. Tsukuma, K. Ueda, M. Shimada, Strength and fracture toughness of isostatically hot‐pressed composites of Al2O3 and Y2O3‐partially‐stabilized ZrO2. Journal of the American Ceramic Society, 68(1), (1985) C-4.
DOI: 10.1111/j.1151-2916.1985.tb15251.x
Google Scholar
[18]
R.M.McMeeking, A.G. Evans, Mechanics of transformation‐toughening in brittle materials. Journal of the American Ceramic Society, 65(5), (1982) 242-246.
DOI: 10.1111/j.1151-2916.1982.tb10426.x
Google Scholar
[19]
F.F. Lange, M. Metcalf, M., Processing‐related fracture origins: II, agglomerate motion and cracklike internal surfaces caused by differential sintering. Journal of the American Ceramic Society, 66(6), (1983) 398-406.
DOI: 10.1111/j.1151-2916.1983.tb10069.x
Google Scholar
[20]
Q.Like, L. Xikun, Q.Guanming, M. Weimin, S. Yanbin, Y. Huadong, Study on toughness mechanism of ceramic cutting tools. Journal of Rare Earths, 25, (1995) 309-316.
DOI: 10.1016/s1002-0721(07)60493-1
Google Scholar
[21]
B.Smuk, M.Szutkowska, J.Walter, J., Alumina ceramics with partially stabilized zirconia for cutting tools. Journal of Materials Processing Technology, 133(1-2), (2003)195-198.
DOI: 10.1016/s0924-0136(02)00232-7
Google Scholar
[22]
C.L. Lin, D.Gan, P.Shen,The effects of TiO2 addition on the microstructure and transformation of ZrO2 with 3 and 6 mol.% Y2O3. Materials Science and Engineering: A, 129(1), (1990) 147-155.
DOI: 10.1016/0921-5093(90)90353-5
Google Scholar
[23]
H.Toraya, M.Yoshimura, S.Somiya, Calibration curve for quantitative analysis of the Monoclinic‐Tetragonal ZrO2 system by X‐ray diffraction. Journal of the American Ceramic Society, 67(6), (1984) C-119.
DOI: 10.1111/j.1151-2916.1984.tb19715.x
Google Scholar
[24]
M.I. Mendelson, Average grain size in polycrystalline ceramics. Journal of the American Ceramic society, 52(8), (1969) 443-446.
DOI: 10.1111/j.1151-2916.1969.tb11975.x
Google Scholar
[25]
J.Chevalier, J. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society, 92(9), (2009) 1901-1920.
DOI: 10.1111/j.1551-2916.2009.03278.x
Google Scholar
[26]
R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia‐containing ceramics. Journal of the American Ceramic Society, 83(3), (2000) 461-487.
DOI: 10.1111/j.1151-2916.2000.tb01221.x
Google Scholar
[27]
E.S. Elshazly, S.M. El-Hout M.E.S. Ali, Yttria tetragonal zirconia biomaterials: kinetic investigation. Journal of Materials Science & Technology, 27(4), (2011) 332-337.
DOI: 10.1016/s1005-0302(11)60070-4
Google Scholar
[28]
S.Ramesh, K.S. Lee C.Y. Tan, A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceramics International.(2018).
DOI: 10.1016/j.ceramint.2018.08.216
Google Scholar
[29]
N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA). International Journal of Refractory Metals and Hard Materials, 36, (2011) 162-166.
DOI: 10.1016/j.ijrmhm.2012.08.010
Google Scholar
[30]
P. Duran, M.Gonzalez, C.Moure, J.R. Jurado, C. Pascual,, A new tentative phase equilibrium diagram for the ZrO 2-CeO 2 system in air. Journal of materials science, 25(12), (1996) 5001-5006.
DOI: 10.1007/bf00580121
Google Scholar
[31]
K.Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of materials science letters, 2(5), (1983) 221-223.
DOI: 10.1007/bf00725625
Google Scholar
[32]
A.Z.A. Azhar, L.C. Choong, H. Mohamed, M.M. Ratnam, Z.A. Ahmad, Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts. Journal of Alloys and Compounds, 513, (2012) 91-96.
DOI: 10.1016/j.jallcom.2011.09.092
Google Scholar