Effect of Lubricants on Fiber Length Distribution and Properties of Glass Fiber Reinforced Composites Based on Polyamide 1010

Article Preview

Abstract:

Influence of lubricants such as montan waxes and fatty acid esters, on properties of glass fiber reinforced composites based on polyamide 1010. Composites with 40 % wt. glass fibers were obtained on twin-screw extruder, while the fiber breakage occur. Fiber length distribution were measured. It is shown, that adding of 0.5 % wt. of lubricants increase content of glass fibers longer than 2 critical length and improve mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-207

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bioplastic market data 2016. http://www.european-bioplastics.org/market/ (accessed 20.June.2017).

Google Scholar

[2] Iavadim A., SrikanthPilla S. G., Turng L. S. Polymer Blends and Biocomposites: Properties and Applications //Handbook of Bioplastics and Biocomposites Engineering Applications. – (2011).

DOI: 10.1002/9781118203699.ch14

Google Scholar

[3] Thielen M., Bioplastics Magazine, Vol. 3, p.50, (2010).

Google Scholar

[4] Fu S. Y., Lauke B., Mai Y. W. Science and engineering of short fibre reinforced polymer composites. – Elsevier, (2009).

DOI: 10.1533/9781845696498.1

Google Scholar

[5] Inceoglu F. et al. Correlation between processing conditions and fiber breakage during compounding of glass fiber‐reinforced polyamide/ Inceoglu, F., Ville, J., Ghamri, N., Pradel, J. L., Durin, A., Valette, R., &Vergnes, B. // Polymer Compo-sites. – 2011. – Т. 32. – №. 11. – С. 1842-1850.

DOI: 10.1002/pc.21217

Google Scholar

[6] Thomason J. L. Structure–property relationships in glass‐reinforced polyamide, part 1: The effects of fiber content //Polymer composites. – 2006. – Т. 27. – №. 5. – С. 552-562.

DOI: 10.1002/pc.20226

Google Scholar

[7] Fu S. Y., Lauke B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers //Composites Science and Technology. – 1996. – Т. 56. – №. 10. – С. 1179-1190.

DOI: 10.1016/s0266-3538(96)00072-3

Google Scholar

[8] Feldmann, M., Heim, H. P., &Zarges, J. C. (2016). Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder. Composites Part A: Applied Science and Manufacturing, 83, 113-119.

DOI: 10.1016/j.compositesa.2015.03.028

Google Scholar

[9] Feldmann, M. W. (2013). Biobasierte Polyamide mit Cellulosefasern: Verfahren-Struktur-Eigenschaften. Kassel University Press.

Google Scholar

[10] Feldmann, M., &Bledzki, A. K. (2014). Bio-based polyamides reinforced with cellulosic fibres – processing and properties. Composites Science and Technology, 100, 113-120.

DOI: 10.1016/j.compscitech.2014.06.008

Google Scholar

[11] Nishitani, Y., Mukaida, J., Yamanaka, T., Kajiyama, T., & Kitano, T. (2017, December). Influence of initial fiber length on the mechanical and tribological properties of hemp fiber reinforced plants-derived polyamide 1010 biomass composites. In AIP Conference Proceedings (Vol. 1914, No. 1, p.070003). AIP Publishing.

DOI: 10.1063/1.5016730

Google Scholar

[12] Kuciel, S., Kuźniar, P., & Liber-Kneć, A. (2012). Polyamides from renewable sources as matrices of short fiber reinforced biocomposites. Polimery, 57(9).

DOI: 10.14314/polimery.2012.627

Google Scholar

[13] Kuciel, S., Kuźnia, P., &Jakubowska, P. (2016). Properties of composites based on polyamide 10.10 reinforced with carbon fiber. Polimery, 61.

DOI: 10.14314/polimery.2016.106

Google Scholar

[14] Nikiforov, A. A., Vol'fson, S. I., Okhotina, N. A., Rinberg, R., & Kroll, L. (2017). The influence of processing additives on the properties of glass-fibre-reinforced composites based on biobased polyamide 1010. International Polymer Science and Technology, 44(7), T43.

DOI: 10.1177/0307174x1704400709

Google Scholar

[15] Nikiforov, A. A., Vol'fson, S. I., Okhotina, N. A., Rinberg, R., Hartmann, T., & Kroll, L. (2017). Mechanical properties of the compositions based on biopolyamide-1010 modified by carbon, glass, and cellulose chopped fibers. Russian Metallurgy (Metally), 2017(4), 279-282.

DOI: 10.1134/s0036029517040152

Google Scholar

[16] Nikiforov, A. A., Okhotina, N. A., Fayzullin, I. Z., Volfson, S. I., Rinberg, R., & Kroll, L. (2016, November). Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. In AIP Conference Proceedings (Vol. 1785, No. 1, p.030018). AIP Publishing.

DOI: 10.1063/1.4967039

Google Scholar

[17] You, Y. L., Li, D. X., Si, G. J., & Deng, X. (2014). Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite. Wear, 311(1), 57-64.

DOI: 10.1016/j.wear.2013.12.018

Google Scholar

[18] Li, D. X., You, Y. L., Deng, X., Li, W. J., &Xie, Y. (2013). Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites. Materials & Design, 46, 809-815.

DOI: 10.1016/j.matdes.2012.11.011

Google Scholar

[19] NikiforovА. А. Composites based on short fiber reinforced bio-based polyamide composites PhD Thesis. technical science: 05.17.06 / Nikiforov Anton Andreevich – Kazan, – 2018. 131 p.

Google Scholar

[20] Kerber M. L., Golovkin U. A., Gorbatkin U. A. et al. Polymerniekompozitcionniemateriali [Polymericcompositematerials] Saint Petersburg, Professia, (2008).

Google Scholar