[1]
M. Valente, G. Milani, Damage assessment and partial failure mechanisms activation of historical masonry churches under seismic actions: three case studies in Mantua, Eng. Fail. Anal. 92 (2018) 495–519.
DOI: 10.1016/j.engfailanal.2018.06.017
Google Scholar
[2]
M. Valente, G. Milani, Seismic response and damage patterns of masonry churches: seven case studies in Ferrara, Italy, Eng. Struct. 177 (2018) 809–835.
DOI: 10.1016/j.engstruct.2018.08.071
Google Scholar
[3]
M. Valente, G. Milani, Damage survey, simplified assessment, and advanced seismic analyses of two masonry churches after the 2012 Emilia earthquake, Int. J. Archit. Herit. (2018). In press. doi:https://doi.org/10.1080/15583058.2018.1492646.
DOI: 10.1080/15583058.2018.1492646
Google Scholar
[4]
M. Valente, G. Milani, Damage assessment and collapse investigation of three historical masonry palaces under seismic actions, Eng. Fail. Anal. 98 (2019) 10–37.
DOI: 10.1016/j.engfailanal.2019.01.066
Google Scholar
[5]
M. Valente, G. Milani, Earthquake-induced damage assessment and partial failure mechanisms of an Italian Medieval castle, Eng. Fail. Anal. 99 (2019) 292–309.
DOI: 10.1016/j.engfailanal.2019.02.008
Google Scholar
[6]
M. Como, Statics of historic masonry constructions, Berlin Heidelberg, (2013).
Google Scholar
[7]
S. Huerta Fernández, The Analysis of Masonry Architecture: A Historical Approach, Archit. Sci. Rev. 51 (2011) 297–328.
Google Scholar
[8]
J. Heyman, The stone skeleton, Int. J. Solids Struct. 2 (1966) 249–256.
Google Scholar
[9]
G. Vasconcelos, P.B. Lourenço, Assessment of the In-plane shear strength of stone masonry walls by simplified models, in: 5th Int. Conf. Struct. Anal. Hist. Constr., New Delhi, India, (2006).
Google Scholar
[10]
M. Gilbert, C. Casapulla, H.M. Ahmed, Limit analysis of masonry block structures with non-associative frictional joints using linear programming, Comput. Struct. 84 (2006) 873–887.
DOI: 10.1016/j.compstruc.2006.02.005
Google Scholar
[11]
M.R. Valluzzi, C. Modena, Experimental analysis and modelling of masonry vaults strengthened by FRP, in: 3th Int. Semin. Hist. Constr., 2001: p.627–636.
Google Scholar
[12]
P. Foraboschi, Strengthening of Masonry Arches With Fiber Reinforced Polymer Strips, J. Compos. Constr. 8 (2004) 191–202.
DOI: 10.1061/(asce)1090-0268(2004)8:3(191)
Google Scholar
[13]
L. Ascione, L. Feo, F. Fraternali, Load carrying capacity of 2D FRP/strengthened masonry structures, Compos. Part B. 36 (2005) 619–626.
DOI: 10.1016/j.compositesb.2004.12.004
Google Scholar
[14]
D. V. Oliveira, I. Basilio, P.B. Lourenço, Experimental Behavior of FRP Strengthened Masonry Arches, J. Compos. Constr. 14 (2010) 312–322.
DOI: 10.1061/(asce)cc.1943-5614.0000086
Google Scholar
[15]
G. Milani, A. Tralli, A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures, Int. J. Solids Struct. 49 (2012) 808–834.
DOI: 10.1016/j.ijsolstr.2011.12.001
Google Scholar
[16]
E. Milani, G. Milani, A. Tralli, Limit analysis of masonry vaults by means of curved shell finite elements and homogenization, Int. J. Solids Struct. 45 (2008) 5258–5288.
DOI: 10.1016/j.ijsolstr.2008.05.019
Google Scholar
[17]
P. Block, J. Ochsendorf, Thrust network analysis: A new methodology for three-dimensional equilibrium., J. Int. Assoc. Shell Spat. Struct. 48 (2007) 1–7.
Google Scholar
[18]
A. Chiozzi, G. Milani, A. Tralli, A Genetic Algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults, Comput. Struct. 182 (2017) 187–204.
DOI: 10.1016/j.compstruc.2016.11.003
Google Scholar
[19]
A. Chiozzi, M. Malagù, A. Tralli, A. Cazzani, ArchNURBS: NURBS-Based Tool for the Structural Safety Assessment of Masonry Arches in MATLAB, J. Comput. Civ. Eng. 30 #401501 (2016) 1–11.
DOI: 10.1061/(asce)cp.1943-5487.0000481
Google Scholar
[20]
L. Piegl, W. Tiller, The NURBS Book, Springer, Berlin, 1995.
Google Scholar
[21]
R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, New York, (1998).
Google Scholar
[22]
A. Chiozzi, G. Milani, N. Grillanda, A. Tralli, An adaptive procedure for the limit analysis of FRP reinforced masonry vaults and applications, Am. J. Eng. Appl. Sci. 9 (2016) 735–745.
DOI: 10.3844/ajeassp.2016.735.745
Google Scholar
[23]
A. Chiozzi, G. Milani, N. Grillanda, A. Tralli, Fast and reliable limit analysis approach for the structural assessment of FRP-reinforced masonry arches, Key Eng. Mater. 747 (2017) 196–203.
DOI: 10.4028/www.scientific.net/kem.747.196
Google Scholar
[24]
A. Chiozzi, G. Milani, N. Grillanda, A. Tralli, A fast and general upper-bound limit analysis approach for out-of-plane loaded masonry walls, Meccanica. 53 (2018) 1875–1898.
DOI: 10.1007/s11012-017-0637-x
Google Scholar
[25]
A. Chiozzi, N. Grillanda, G. Milani, A. Tralli, UB-ALMANAC: An adaptive limit analysis NURBS-based program for the automatic assessment of partial failure mechanisms in masonry churches, Eng. Fail. Anal. 85 (2018) 201–220.
DOI: 10.1016/j.engfailanal.2017.11.013
Google Scholar
[26]
N. Grillanda, A. Chiozzi, F. Bondi, A. Tralli, F. Manconi, F. Stochino, A. Cazzani, Numerical insights on the structural assessment of historical masonry stellar vaults: the case of Santa Maria del Monte in Cagliari, Contin. Mech. Thermodyn. (2019) 1–24.
DOI: 10.1007/s00161-019-00752-8
Google Scholar
[27]
A.T. Vermeltfoort, Analysis and experiments of masonry arches, Hist. Constr. (2001) 489–498.
Google Scholar
[28]
P. Faccio, P. Foraboschi, E. Siviero, Masonry vaults reinforced with FPR strips, L'Edilizia. 7 (1999) 44–50.
Google Scholar
[29]
G. Milani, E. Milani, A. Tralli, Upper bound limit analysis model for FRP – reinforced masonry curved structures . Part II : Structural analyses, Comput. Struct. 87 (2009) 1534–1558.
DOI: 10.1016/j.compstruc.2009.07.010
Google Scholar
[30]
S.L. Tilahun, H.C. Ong, Prey-Predator Algorithm: A New Metaheuristic Algorithm for Optimization Problems, Int. J. Inf. Technol. Decis. Mak. 14 (2015) 1331–1352.
DOI: 10.1142/s021962201450031x
Google Scholar
[31]
S.L. Tilahun, H.C. Ong, Comparison between Genetic Algorithm and Prey-Predator Algorithm, Malaysian J. Fundam. Appl. Sci. 9 (2013) 167–170.
DOI: 10.11113/mjfas.v9n4.104
Google Scholar
[32]
J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, (2009).
DOI: 10.1002/9780470749081
Google Scholar
[33]
R. McNeel, Rhinoceros: Nurbs Modeling for Windows, Robert McNeel & Associates, Seattle, (2008).
Google Scholar
[34]
P.R. Kennicott, Initial Graphics Exchange Specification, IGES 5.3, U.S. Product Data Association, 1966. https://books.google.com/books?id=FHPhGwAACAAJ&pgis=1.
Google Scholar
[35]
National Research Council, Instruction for the design, building and control of static retrofitting interventions through FRP composites, DT200-2013, (2013).
Google Scholar