[1]
CNR Istruzioni per la progettazione, l'esecuzione ed il controllo di interventi di Consolidamento statico mediante l'utilizzo di compositi fibrorinforzati a matrice inorganica, DT 215 4.11.(2018).
Google Scholar
[2]
A. D'Ambrisi, L. Feo, F. Focacci, Bond-Slip relations for PBO-FRCM materials externally bonded to concrete. Composite Part B: Engineering, 43(8) (2012) 2938-2949.
DOI: 10.1016/j.compositesb.2012.06.002
Google Scholar
[3]
A. D'Ambrisi, L. Feo, F. Focacci, Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry, Composite Part B: Engineering, 46 (2013) 15-20.
DOI: 10.1016/j.compositesb.2012.10.018
Google Scholar
[4]
A. D'Ambrisi, L. Feo, F. Focacci, Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Composite Part B: Engineering, 44(1) (2013) 524-532.
DOI: 10.1016/j.compositesb.2012.03.011
Google Scholar
[5]
T. D'Antino, C. Carloni, L. H. Sneed, C. Pellegrino, Matrix-fiber bond behavior in PBO-FRCM composites: A fracture mechanics approach, Engineering Fracture Mechanics, 117 (2014) 94-111.
DOI: 10.1016/j.engfracmech.2014.01.011
Google Scholar
[6]
G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenço. D.V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Materials and Structures, 47(12) (2014) 2021-2037.
DOI: 10.1617/s11527-014-0360-1
Google Scholar
[7]
R. Labernarda, Modellazione del legame di aderenza matrice-rinforzo in FRCM, Tesi di laurea, Rel. Ombres L., Univ. della Calabria, a.a. 2014-2015.
Google Scholar
[8]
A. Caporale, L. Feo, R. Luciano, Limit Analysis of FRP strengthened masonry arches via non linear and linear programming, Composites Part B: Engineering, 43(2) (2012) 439-446.
DOI: 10.1016/j.compositesb.2011.05.019
Google Scholar
[9]
V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations, Composite Structures, 149 (2016) 184-96.
DOI: 10.1016/j.compstruct.2016.04.030
Google Scholar
[10]
V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano, Intrados strengthening of brick masonry arches with different FRCM composites: Experimental and analytical investigations, Composite Structures, 176 (2017) 898-909.
DOI: 10.1016/j.compstruct.2017.06.023
Google Scholar
[11]
E. Bertolesi, G. Milani, F.G. Carozzi, C. Poggi, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses, Composite Structures, 187 (2018) 385–402.
DOI: 10.1016/j.compstruct.2017.12.021
Google Scholar
[12]
F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation, Composite Structures, 187 (2018) 466-480.
DOI: 10.1016/j.compstruct.2017.12.075
Google Scholar
[13]
W. Prager, P.G. Hodge Jr., Theory of Perfectly Plastic Solids, John Wiley, (1952).
Google Scholar
[14]
V. Franciosi, Ponti ad Arco ad Impalcato Sospeso, Ulrico Hoepli Ed. Milano, (1958).
Google Scholar
[15]
J. Heyman, The stone skeleton, Int. Journal of Solids and Structures, 2(2) (1966) 249-256.
Google Scholar
[16]
S. Coccia, M. Como, F. Di Carlo, Minimum thrust and minimum thickness of hemispherical masonry domes, Acta Mechanica, 227(9) (2016) 2415-2425.
DOI: 10.1007/s00707-016-1630-5
Google Scholar
[17]
F. Di Carlo, S. Coccia, Z. Rinaldi, Collapse load of a masonry arch after actual displacements of the supports, Archive of Applied Mechanics, 88(9) (2018) 1545-1558.
DOI: 10.1007/s00419-018-1386-6
Google Scholar