Plastic Analysis of Masonry Arches Reinforced with FRCM under Vertical and Horizontal Forces

Article Preview

Abstract:

Aim of this paper is the evaluation of the increasing of the load-carrying capacity of masonry arches strengthened at intrados extrados with poliparafenilenbenzobisoxazole (PBO) fabric reinforced cementitious mortar composite. An analytical procedure is proposed, in the Limit Analysis context, considering two schemes of load: a vertical load applied at the crown of the arch and a horizontal distribution proportional to the weight. The presence of the composite material is introduced by considering a plastic behaviour of the hinges defining the virtual kinematic mechanism compatible with the Limit Analysis hypotheses. Two assumptions on these mechanisms are made: a correct position of the hinges inside the cross-section of the masonry arch or a simplified location at the intrados or at the extrados of the structure. Finally, a parametric survey is carried out in order to understand the influence of the involved parameters on the load-carrying capacity of the strengthened masonry arches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-243

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] CNR Istruzioni per la progettazione, l'esecuzione ed il controllo di interventi di Consolidamento statico mediante l'utilizzo di compositi fibrorinforzati a matrice inorganica, DT 215 4.11.(2018).

Google Scholar

[2] A. D'Ambrisi, L. Feo, F. Focacci, Bond-Slip relations for PBO-FRCM materials externally bonded to concrete. Composite Part B: Engineering, 43(8) (2012) 2938-2949.

DOI: 10.1016/j.compositesb.2012.06.002

Google Scholar

[3] A. D'Ambrisi, L. Feo, F. Focacci, Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry, Composite Part B: Engineering, 46 (2013) 15-20.

DOI: 10.1016/j.compositesb.2012.10.018

Google Scholar

[4] A. D'Ambrisi, L. Feo, F. Focacci, Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Composite Part B: Engineering, 44(1) (2013) 524-532.

DOI: 10.1016/j.compositesb.2012.03.011

Google Scholar

[5] T. D'Antino, C. Carloni, L. H. Sneed, C. Pellegrino, Matrix-fiber bond behavior in PBO-FRCM composites: A fracture mechanics approach, Engineering Fracture Mechanics, 117 (2014) 94-111.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[6] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenço. D.V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Materials and Structures, 47(12) (2014) 2021-2037.

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[7] R. Labernarda, Modellazione del legame di aderenza matrice-rinforzo in FRCM, Tesi di laurea, Rel. Ombres L., Univ. della Calabria, a.a. 2014-2015.

Google Scholar

[8] A. Caporale, L. Feo, R. Luciano, Limit Analysis of FRP strengthened masonry arches via non linear and linear programming, Composites Part B: Engineering, 43(2) (2012) 439-446.

DOI: 10.1016/j.compositesb.2011.05.019

Google Scholar

[9] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations, Composite Structures, 149 (2016) 184-96.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[10] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano, Intrados strengthening of brick masonry arches with different FRCM composites: Experimental and analytical investigations, Composite Structures, 176 (2017) 898-909.

DOI: 10.1016/j.compstruct.2017.06.023

Google Scholar

[11] E. Bertolesi, G. Milani, F.G. Carozzi, C. Poggi, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses, Composite Structures, 187 (2018) 385–402.

DOI: 10.1016/j.compstruct.2017.12.021

Google Scholar

[12] F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation, Composite Structures, 187 (2018) 466-480.

DOI: 10.1016/j.compstruct.2017.12.075

Google Scholar

[13] W. Prager, P.G. Hodge Jr., Theory of Perfectly Plastic Solids, John Wiley, (1952).

Google Scholar

[14] V. Franciosi, Ponti ad Arco ad Impalcato Sospeso, Ulrico Hoepli Ed. Milano, (1958).

Google Scholar

[15] J. Heyman, The stone skeleton, Int. Journal of Solids and Structures, 2(2) (1966) 249-256.

Google Scholar

[16] S. Coccia, M. Como, F. Di Carlo, Minimum thrust and minimum thickness of hemispherical masonry domes, Acta Mechanica, 227(9) (2016) 2415-2425.

DOI: 10.1007/s00707-016-1630-5

Google Scholar

[17] F. Di Carlo, S. Coccia, Z. Rinaldi, Collapse load of a masonry arch after actual displacements of the supports, Archive of Applied Mechanics, 88(9) (2018) 1545-1558.

DOI: 10.1007/s00419-018-1386-6

Google Scholar