Discrete and Finite Element Models for the Analysis of Unreinforced and Partially Reinforced Masonry Arches

Article Preview

Abstract:

In this work the behavior of masonry arches, without reinforcement and with partial reinforcement, is investigated by means of three different numerical models. The first one is a Discrete Element model based on rigid blocks, and elastic-plastic interfaces; the second one is a standard heterogeneous Finite Element Model, which is adopted for a detailed micro-modelling of arch voussoirs, joints, and reinforcements. The third model is analytic-numerical, and it is adopted for validating the other numerical results. The aim of the work is the comparison and validation of the numerical Finite and Discrete Element models for the correct simulation of masonry arch behavior, together with the evaluation of the effectiveness of these models in simulating the behavior of the partially reinforced arch.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-235

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Heyman, The masonry arch, John Wiley and Sons, (1982).

Google Scholar

[2] N. Bicanic, C. Stirling, C.J. Pearce, Discontinuous modelling of masonry bridges, Comp. Mech. 31(1–2) (2003), 60–68.

Google Scholar

[3] D. Baraldi, E. Reccia, A. Cecchi, In plane loaded masonry walls: DEM and FEM/DEM models. A critical review, Meccanica 53(7) (2018), 1613-1628.

DOI: 10.1007/s11012-017-0704-3

Google Scholar

[4] F. Cannizzaro, B. Pantò, S. Caddemi, I Caliò, A Discrete Macro-Element Method (DMEM) for the nonlinear structural assessment of masonry arches, Eng. Struct. 168 (2018), 243-256.

DOI: 10.1016/j.engstruct.2018.04.006

Google Scholar

[5] M. Gilbert, C. Melbourne, Rigid-block analysis of masonry structures, Struct. Eng. 72(21) (1994), 356-361.

Google Scholar

[6] E. Reccia, A. Cecchi, G. Milani, A finite element-discrete element approach for the analysis of the Venice trans-lagoon railway bridge, Civil-Comp Proceedings, 110, (2016).

DOI: 10.4203/ccp.110.144

Google Scholar

[7] E. Reccia, A. Cecchi, G. Milani, A. Tralli, Full 3D homogenization approach to investigate the behavior of masonry arch bridges: The Venice trans-lagoon railway bridge, Constr. Build. Mat. 66 (2014) 567-586.

DOI: 10.1016/j.conbuildmat.2014.05.096

Google Scholar

[8] M.R. Valluzzi, M. Valdemarca, C. Modena, Behaviour of brick masonry vaults strengthened by FRP laminates, J. Compos. Construct. 5(3) (2001), 163-169.

DOI: 10.1061/(asce)1090-0268(2001)5:3(163)

Google Scholar

[9] P. Foraboschi, Strengthening of masonry arches with fiber-reinforced polymer strips, J. Compos. Constr. 8(3) (2004), 191-202.

DOI: 10.1061/(asce)1090-0268(2004)8:3(191)

Google Scholar

[10] D. Oliveira, I. Basilio, P.B. Lourenço, Experimental Behavior of FRP Strengthened Masonry Arches, J. Compos. Constr. 14(3) (2010) 312-322.

DOI: 10.1061/(asce)cc.1943-5614.0000086

Google Scholar

[11] B. Pantò, F. Cannizzaro, S. Caddemi, I. Caliò, C. Chácara, P.B. Lourenço, Nonlinear modelling of curved masonry structures after seismic retrofit through FRP reinforcing, Build., 7(3) (2017) 79, 1-17.

DOI: 10.3390/buildings7030079

Google Scholar

[12] P. Zampieri, N. Simoncelo, C.D. Tetougueni, C. Pellegrino, A review of methods for strengthening of masonry arches with composite materials, Eng. Struct., 171 (2018) 154-169.

DOI: 10.1016/j.engstruct.2018.05.070

Google Scholar

[13] A. Cecchi, K. Sab, A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork, Int. J. Solids Struct. 41(9-10) (2004) 2259-2276.

DOI: 10.1016/j.ijsolstr.2003.12.020

Google Scholar

[14] D. Baraldi, A. Cecchi, Discrete approaches for the nonlinear analysis of in plane loaded masonry walls: Molecular dynamic and static algorithm solutions, Eur. J. Mech. A/Solids, 57 (2016) 165-177.

DOI: 10.1016/j.euromechsol.2015.12.008

Google Scholar

[15] D. Baraldi, A. Cecchi, Discrete model for the collapse behaviour of unreinforced random masonry walls, Key Eng. Mat. 747 (2017) 3-10.

DOI: 10.4028/www.scientific.net/kem.747.3

Google Scholar

[16] D. Baraldi, C.B. de Carvalho Bello, A. Cecchi, E. Meroi, E. Reccia, Non-linear behaviour of masonry walls: FE, DE & FE/DE models, Compos. Mech. Comp. Appl. Int. J. (2019) in press.

DOI: 10.1615/compmechcomputapplintj.2019026998

Google Scholar

[17] A. Orduna, Seismic Assessment of Ancient Masonry Structures by Rigid Blocks Limit Analysis, Ph.D. Thesis, University of Minho, (2003).

Google Scholar

[18] G. Milani, P.B. Lourenço, 3D non-linear behavior of masonry arch bridges, Comp. Struct. 110-111 (2012) 133-150.

DOI: 10.1016/j.compstruc.2012.07.008

Google Scholar

[19] TNO DIANA, DIANA. DIsplacement method ANAlyser, release 9.4, User's Manual.

Google Scholar

[20] M. Pavlovic, E. Reccia, A. Cecchi, A Procedure to Investigate the Collapse Behavior of Masonry Domes: Some Meaningful Cases, Int. J. Arch. Herit. 10(1) (2016) 67-83.

DOI: 10.1080/15583058.2014.951797

Google Scholar