[1]
V. Giamundo, G.P. Lignola, G. Maddaloni, A. Balsamo, A. Prota, G. Manfredi, Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Composites Part B: Engineering 2015; 70: 53-63.
DOI: 10.1016/j.compositesb.2014.10.039
Google Scholar
[2]
A. Marini, A. Belleri, M. Preti, P. Riva, E. Giuriani, Lightweight extrados restraining elements for the anti-seismic retrofit of single leaf vaults. Eng Struct 2017; 141: 543-554.
DOI: 10.1016/j.engstruct.2017.03.038
Google Scholar
[3]
G. Ramaglia, G.P. Lignola, A. Balsamo, A. Prota, G. Manfredi, Seismic Strengthening of Masonry Vaults with Abutments Using Textile-Reinforced Mortar. ASCE 2017; 21 (2), art. no. 04016079.
DOI: 10.1061/(asce)cc.1943-5614.0000733
Google Scholar
[4]
D. Theodossopoulos, N. Makoond, L. Akl, The effect of boundary conditions on the behaviour of pointed masonry barrel vaults: Late gothic cases in Scotland. 2016 10: 274-292.
DOI: 10.2174/1874836801610010274
Google Scholar
[5]
J.A. Ochsendorf, Collapse of masonry structures. Dissertation, Cambridge University Department of Engineering, Cambridge (2002).
Google Scholar
[6]
J.A. Ochsendorf JA, The masonry arch on spreading supports. Struct Eng Inst Struct Eng Lond 2006 84(2):29–36.
Google Scholar
[7]
S. Coccia, F. Di Carlo, Z. Rinaldi, Collapse displacements for a mechanism of spreading-induced supports in a masonry arch (2015) International Journal of Advanced Structural Engineering, 7 (3), pp.307-320.
DOI: 10.1007/s40091-015-0101-x
Google Scholar
[8]
P. Zampieri, N. Simoncello N., C.D. Tetougueni, C. Pellegrino, A review of methods for strengthening of masonry arches with composite materials, Eng. Struct. 2018, vol. 171, no. May, p.154–169.
DOI: 10.1016/j.engstruct.2018.05.070
Google Scholar
[9]
V. Alecci, G. Misseri, L. Rovero, G. Stipo, M. De Stefano, L. Feo, R. Luciano, Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Composites Part B: Engineering 2016;100: 228-239.
DOI: 10.1016/j.compositesb.2016.05.063
Google Scholar
[10]
F. Cakir, H. Uysal, V. Acar, Experimental modal analysis of masonry arches strengthened with graphene nanoplatelets reinforced prepreg composites. Measurement: Journal of the International Measurement Confederation 2016; 90: 233-241.
DOI: 10.1016/j.measurement.2016.04.061
Google Scholar
[11]
F. Cakir, H. Uysal, Experimental modal analysis of brick masonry arches strengthened prepreg composites. Journal of Cultural Heritage 2015; 16(3): 284-292.
DOI: 10.1016/j.culher.2014.06.003
Google Scholar
[12]
Ministero per i Beni e le Attività Culturali, Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale allineate alle nuove Norme tecniche per le costruzioni (d.m. 14 gennaio 2008), (in italian).
DOI: 10.3280/mg2016-003026
Google Scholar
[13]
A. Borri, P. Casadei, G. Castori, J. Hammond, Strengthening of brick masonry arches with externally bonded steel reinforced composites. Journal of Composites for Construction 2009; 13 (6):468-475.
DOI: 10.1061/(asce)cc.1943-5614.0000030
Google Scholar
[14]
D.V. Oliveira, I. Basilio, P.B. Loureņo, Experimental behavior of FRP strengthened masonry arches. Journal of Composites for Construction 2010; 14 (3): 312-322.
DOI: 10.1061/(asce)cc.1943-5614.0000086
Google Scholar
[15]
M.R. Valluzzi, M. Valdemarca, C. Modena, Behavior of brick masonry vaults strengthened by FRP laminates. (2001); 5 (3): 163-169.
DOI: 10.1061/(asce)1090-0268(2001)5:3(163)
Google Scholar
[16]
L. Garmendia, J.T. San-José, J.T., D. García, P. Larrinaga, Rehabilitation of masonry arches with compatible advanced composite material. Constr Build Mater 2011; 25 (12): 4374-4385.
DOI: 10.1016/j.conbuildmat.2011.03.065
Google Scholar
[17]
V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. de Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: Experimental and analytical investigations. Composite Structures 2016; 149: 184-196.
DOI: 10.1016/j.compstruct.2016.04.030
Google Scholar
[18]
V. Alecci, M. De Stefano, F. Focacci, R. Luciano, L. Rovero, G. Stipo, Strengthening masonry arches with lime-based mortar composite. Buildings 2017; 7 (2), art. no. 49.
DOI: 10.3390/buildings7020049
Google Scholar
[19]
S. Briccoli Bati, L. Rovero, Towards a methodology for estimating strength and collapse mechanism in masonry arches strengthened with fibre reinforced polymer applied on external surfaces. 2008; 41 (7): 1291-1306.
DOI: 10.1617/s11527-007-9328-8
Google Scholar
[20]
L. Garmendia, I. Marcos, E. Garbin, M.R. Valluzzi, Strengthening of masonry arches with Textile-Reinforced Mortar: experimental behaviour and analytical approaches. Materials and Structures (2014) 47: 2067–2080.
DOI: 10.1617/s11527-014-0339-y
Google Scholar
[21]
P. Girardello, A. Pappas, F. da Porto, M.R. Valluzzi, Experimental testing and numerical modelling of masonry vaults, International Conference on Rehabilitation and Restoration of Structures At: Chennai, India, January (2013).
Google Scholar
[22]
L. Bednarz, A. Górski, J. Jasieńko, E. Rusiński, Simulations and analyses of arched brick structures. Automation in Construction 2011; 20(7):741-754.
DOI: 10.1016/j.autcon.2011.01.005
Google Scholar
[23]
F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Composite Structures 2018; 187 (2018): 466–480.
DOI: 10.1016/j.compstruct.2017.12.075
Google Scholar
[24]
S. Briccoli Bati, L. Rovero, U. Tonietti, Strengthening masonry arches with composite materials. ASCE 2007; 11 (1): 33-41.
DOI: 10.1061/(asce)1090-0268(2007)11:1(33)
Google Scholar
[25]
Y. Tao, T.J. Stratford, J.F. Chen, Behaviour of a masonry arch bridge repaired using fibre-reinforced polymer composites. Eng Struct 2011; 33 (5): 1594-1606.
DOI: 10.1016/j.engstruct.2011.01.029
Google Scholar
[26]
S. De Santis, F. Roscini, G. de Felice, Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout. Composites Part B 2018; 141 (2018): 20–36.
DOI: 10.1016/j.compositesb.2017.12.023
Google Scholar