An Alternative Approach for FRCM Matrix Tensile Strength Evaluation

Article Preview

Abstract:

Structural retrofitting with composite materials proved to be an effective technique for rehabilitation of degraded or damaged masonry and concrete buildings. Nowadays, Fiber Reinforced Cementitious Matrix (FRCM) composites are widely used as externally bonded strengthening systems thanks to their high performance, low weight and easiness of installation. Several experimental tests and numerical studies are currently available concerning the tensile and bond behavior of FRCM systems, but a debated and still open issue concerns the methods for the mechanical characterization of the mortar used as matrix within the strengthening system. The present paper analyses and compares different test methods for determining the matrix tensile strength. Pure tensile and flexural tests have been carried out on different mortar matrix samples. In order to evaluate which is the most suitable value to be considered for a correct interpretation and modeling of the composite system, the experimental results obtained through flexural tests on standard mortar specimens have been compared with the outcomes obtained from direct tensile tests on FRCM coupons. The present study represents only a first step for the definition of the most appropriate test method for the mechanical characterization of the matrix used within FRCM strengthening systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-370

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. De Santis, G. de Felice, Tensile behaviour of mortar-based composites for externally bonded reinforcement systems, Compos Part B 68 (2015) 401-413.

DOI: 10.1016/j.compositesb.2014.09.011

Google Scholar

[2] G. de Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Mater Struct 47(12) (2014) 2021-2037.

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[3] A. Bellini, B. Ferracuti, C. Mazzotti, Effect of matrix on bond between FRCM and masonry, Proc. of FRPRCS-12/APFIS-2015 Joint Conference, Nanjing, China, 14-16 December (2015).

Google Scholar

[4] F.G. Carozzi, A. Bellini, T. D'Antino, G. de Felice, F. Focacci, L. Hojdys, L. Laghi, E. Lanoye, F. Micelli, M. Panizza, C. Poggi, Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements, Compos Part B 128 (2017) 100-119.

DOI: 10.1016/j.compositesb.2017.06.018

Google Scholar

[5] M. Leone, M.A. Aiello, A. Balsamo, F.G. Carozzi, F. Ceroni, M. Corradi, M. Gams, E. Garbin, N. Gattesco, P. Krajewski, C. Mazzotti, D. Oliveira, C. Papanicolaou, G. Ranocchiai, F. Roscini, D. Saenger, Glass fabric reinforced cementitious matrix: tensile properties and bond performance on masonry substrate, Compos Part B 127 (2017) 196-214.

DOI: 10.1016/j.compositesb.2017.06.028

Google Scholar

[6] S. De Santis, F. Ceroni, G. de Felice, M. Fagone, B. Ghiassi, A. Kwiecień, G.P. Lignola, M. Morganti, M. Santandrea, M.R. Valluzzi, A. Viskovic, Round Robin Test on tensile and bond behavior of Steel Reinforced Grout systems, Compos Part B 127 (2017) 100-120.

DOI: 10.1016/j.compositesb.2017.03.052

Google Scholar

[7] NTC 2008, D.M. 14 Gennaio 2008. Nuove Norme Tecniche per le costruzioni, Italian Ministry of Infrastructures and Transportation, Rome, (2008).

Google Scholar

[8] H.W. Reinhardt, Fracture mechanics of an elastic softening material like concrete, Heron 29 (2), (1984).

Google Scholar

[9] Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Mater Struct 18 (1985) 287-290.

DOI: 10.1007/bf02472918

Google Scholar

[10] Z.P. Bazant, Mechanics of fracture and progressive cracking in concrete structures, in: G.C. Sih and A. Di Tommaso (Eds.), Fracture mechanics of concrete: structural application and numerical calculation, Martinus Nijhoff Publishers, 1985, pp.1-94.

DOI: 10.1007/978-94-009-6152-4_1

Google Scholar

[11] K. Mosalam, L. Glascoe, J. Bernier, Mechanical Properties of Unreinforced Brick Masonry, United States, 2009,.

DOI: 10.2172/966219

Google Scholar

[12] R. van der Pluijm, Non-linear behavior of masonry under tension, Heron 42(1),1977, pp.25-55.

Google Scholar

[13] R. Hayen, K. Van Balen, D. Van Gemert, Triaxial interaction of natural stone, brick and mortar in masonry constructions, in: L. Schueremans (Eds.), Building Materials and Building technology to Preserve the Built Heritage, WTA Schriftenreihe, 2009, pp.333-352.

Google Scholar

[14] UNI EN 1015-11. Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar. (2007).

DOI: 10.3403/01905442u

Google Scholar

[15] EN 13412. Products and systems for the protection and repair of concrete structures. Test methods. Determination of modulus of elasticity in compression. (2006).

DOI: 10.3403/02593405

Google Scholar

[16] A. Bellini, M. Bovo, C. Mazzotti, Experimental and numerical evaluation of fiber-matrix interface behaviour of different FRCM systems, Compos Part B 161 (2019) 411-426.

DOI: 10.1016/j.compositesb.2018.12.115

Google Scholar

[17] A. Bellini, S. Kahangi Shahreza, C. Mazzotti, Cyclic bond behavior of FRCM composites applied on masonry substrate, Compos Part B 169 (2019) 189-199.

DOI: 10.1016/j.compositesb.2019.04.009

Google Scholar