On the Use of Digital Image Correlation (DIC) for Evaluating the Tensile Behaviour of BFRCM Strips

Article Preview

Abstract:

Fibre Reinforced Cementitious Matrix (FRCM) composites are becoming largely adopted for retrofitting masonry structures. These materials offer several advantages in comparison to Fibre Reinforced Polymer (FRP) composites, such as good resistance to fire and high temperatures, vapour permeability, possibility to be applied on wet surfaces, higher compatibility with the masonry substrate. However, the tensile behavior of FRCM materials is more complex compared to FRP composites, due to the limited tensile strength of the cement-based matrix. For this reason, FRCM materials require appropriate tensile characterization and, in this context, the use of non-conventional measurement systems, such as the Digital Image Correlation (DIC), can offer numerous advantages. This work presents an experimental study on the application of the DIC technique for the tensile characterization of Basalt Fibre Reinforced Cementitious Matrix (BFRCM) strips. Tensile tests were carried out on three series of specimens reinforced with one, two or three layers of basalt grid in order to investigate the effect of the reinforcement ratio on the tensile response of the composite strips. The test setup and the calibration of the DIC analyses are discussed. It is shown as the DIC allows obtaining detailed information on the tensile response, including the evaluation of the full strain field on the surface of the BFRCM strips and the location of cracks. Results are discussed also in terms of stress-strain curves and failure modes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-384

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D'Antino, T. and Papanicolaou, C. (2017). Mechanical characterization of textile reinforced inorganic-matrix composites. Composites Part B: Engineering, 127, 78-91.

DOI: 10.1016/j.compositesb.2017.02.034

Google Scholar

[2] Donnini, J. and Corinaldesi, V. (2017). Mechanical characterization of different FRCM systems for structural reinforcement. Construction and Building Materials, 145, 565-575.

DOI: 10.1016/j.conbuildmat.2017.04.051

Google Scholar

[3] Dalalbashi, A., Ghiassi, B., Oliveira, D. V., Freitas, A. (2018a). Fiber-tomortar bond behavior in TRM composites: effect of embedded length and fiber configuration. Composites Part B: Engineering.

DOI: 10.1016/j.compositesb.2018.06.014

Google Scholar

[4] Bellini, A., Bovo, M., Mazzotti, C. (2019). Experimental and numerical evaluation of fiber-matrix interface behavior of different FRCM systems. Composites Part B: Engineering, 161, 411-426.

DOI: 10.1016/j.compositesb.2018.12.115

Google Scholar

[5] Leone, M., Aiello, M. A., Balsamo, A., Carozzi, F. G., Ceroni, F., Corradi, M., ... Mazzotti, C. (2017). Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B: Engineering, 127, 196-214.

DOI: 10.1016/j.compositesb.2017.06.028

Google Scholar

[6] Carozzi, F. G., Bellini, A., D'Antino, T., de Felice, G., Focacci, F., Hojdys, Ł., ... & Poggi, C. (2017). Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Composites Part B: Engineering, 128, 100-119.

DOI: 10.1016/j.compositesb.2017.06.018

Google Scholar

[7] Ombres, L., Mancuso, N., Mazzuca, S., Verre, S. (2018b). Bond between Carbon Fabric-Reinforced Cementitious Matrix and Masonry Substrate. Journal of Materials in Civil Engineering, 31(1), 04018356.

DOI: 10.1061/(asce)mt.1943-5533.0002561

Google Scholar

[8] Caggegi, C., Carozzi, F. G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., ... & Zuccarino, L. (2017). Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B: Engineering, 127, 175- 195.

DOI: 10.1016/j.compositesb.2017.05.048

Google Scholar

[9] De Santis, S., Ceroni, F., de Felice, G., Fagone, M., Ghiassi, B., Kwiecień, A., ... & Viskovic, A. (2017). Round Robin Test on tensile and bond behavior of Steel Reinforced Grout systems. Composites Part B: Engineering, 127, 100-120.

DOI: 10.1016/j.compositesb.2017.03.052

Google Scholar

[10] Bilotta, A., Ceroni, F., Lignola, G. P., Prota, A. (2017). Use of DIC technique for investigating the behavior of FRCM materials for strengthening masonry elements. Composites Part B: Engineering, 129, 251-270.

DOI: 10.1016/j.compositesb.2017.05.075

Google Scholar

[11] Tekieli, M., De Santis, S., de Felice, G., Kwiecień, A., Roscini, F. (2017). Application of Digital Image Correlation to composite reinforcements testing. Composite Structures, 160, 670-688.

DOI: 10.1016/j.compstruct.2016.10.096

Google Scholar

[12] Caggegi, C., Lanoye, E., Djama, K., Bassil, A., & Gabor, A. (2017). Tensile behavior of a basalt TRM strengthening system: influence of mortar and reinforcing textile ratios. Composites Part B: Engineering, 130, 90-102.

DOI: 10.1016/j.compositesb.2017.07.027

Google Scholar

[13] ICC. AC434. (2013). Proposed Acceptance Criteria for Masonry and Concrete Strengthening Using Fibre-reinforced Cementitious Matrix (FRCM) Composite Systems,. Whittier, CA: ICC-Evaluation Service.

DOI: 10.14359/51702356

Google Scholar

[14] RILEM Technical Committee 232-TDT (Wolfgang Brameshuber) Mater Struct (2016) 49: 4923. doi:10. 1617/s115270160839z.

DOI: 10.1617/s11527-016-0839-z

Google Scholar

[15] Linea Guida per la identificazione, la qualificazione ed il controllo di accettazione di compositi fibrorinforzati a matrice inorganica (FRCM) da utilizzarsi per il consolidamento strutturale di costruzioni esistenti,. (2019). Published by the Italian Ministry of Public Works.

DOI: 10.3221/igf-esis.12.04

Google Scholar

[16] ISO 13934-1, (April 2013). Textiles – Tensile properties of fabrics – Part 1: Determination of maximum force and elongation at maximum force using the strip method,. CEN – European Committee for Standardization.

DOI: 10.3403/30254791

Google Scholar

[17] EN 1015-11, (1999). Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar,.

DOI: 10.3403/01905442u

Google Scholar