Discontinuous CFRP-Jacketing of Masonry Columns

Article Preview

Abstract:

Existing masonry columns are often susceptible to cracking due to overloading. Moreover, their fragility under earthquakes’ forces is of particular concern in seismic-prone regions. In order to mitigate these structural deficiencies, Fiber Reinforced Polymers (FRPs) are commonly used for external confinement. Full-jacketing, by means of FRP-wrapping is recognized to be very effective in improving the load bearing capacity and the ductility of masonry columns. Unfortunately, long-term effects seem to be detrimental for the masonry core, since its breathability is obstructed by the polymeric resin. Thus, a discontinuous application of the FRP-confinement appears to be more indicated in stone-masonry columns, allowing the humidity cycles to recur. On the other hand, the discontinuous wrapping negatively affects the confinement effectiveness, since both confined and unconfined masonry regions participate in the bearing capacity. In this sense, the present research is aimed to study the discontinuous confinement of half-scale masonry columns by means of Carbon-FRP strips. Unconfined and confined specimens were tested under uniaxial compression. The CFRP-confinement was studied by investigating the lateral strain in the confined and unconfined portions of the specimens. The results are reported and discussed in the paper in terms of failure modes, axial stress-strain and axial stress versus lateral strain relationships. The outcomes are reasonably convenient for a proper analytical interpretation of the phenomenon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-403

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Foti, D. (2016). Innovative techniques for concrete reinforcement with polymers. Construction and Building Materials, 112, 202-209.

DOI: 10.1016/j.conbuildmat.2016.02.111

Google Scholar

[2] Cascardi, A., Micelli, F., & Aiello, M. A. (2018). FRCM-confined masonry columns: experimental investigation on the effect of the inorganic matrix properties. Construction and Building Materials, 186, 811-825.

DOI: 10.1016/j.conbuildmat.2018.08.020

Google Scholar

[3] Maddaloni, G., Cascardi, A., Balsamo, A., Di Ludovico, M., Micelli, F., Aiello, M. A., & Prota, A. (2017). Confinement of full-scale masonry columns with FRCM systems. In Key Engineering Materials (Vol. 747, pp.374-381). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/kem.747.374

Google Scholar

[4] Minafò, G., & La Mendola, L. (2018). Experimental investigation on the effect of mortar grade on the compressive behaviour of FRCM confined masonry columns. Composites Part B: Engineering, 146, 1-12.

DOI: 10.1016/j.compositesb.2018.03.033

Google Scholar

[5] Ombres, L., & Verre, S. (2018). Masonry columns strengthened with Steel Fabric Reinforced Cementitious Matrix (S-FRCM) jackets: experimental and numerical analysis. Measurement.

DOI: 10.1016/j.measurement.2018.05.114

Google Scholar

[6] Ivorra, S., Bru Orts, D., Galvañ Morena, A., Silvestri, S., Apera, C., & Foti, D. (2017). TRM Reinforcement of masonry specimens for seismic areas. International Journal of Safety and Security Engineering, Vol 7 (4), p.463 – 474.

DOI: 10.2495/safe-v7-n4-463-474

Google Scholar

[7] Bieker, C., Seim, W., & Stürz, J. (2002). Post-Strengthening of Masonry Columns by use of Fiber–reinforced polymers (FRP). In Third International Conference of Composites in Infrastructure, San Francisco.

Google Scholar

[8] Masia, M. J., & Shrive, N. G. (2003). Carbon fibre reinforced polymer wrapping for the rehabilitation of masonry columns. Canadian journal of civil engineering, 30(4), 734-744.

DOI: 10.1139/l03-015

Google Scholar

[9] Krevaikas, T. D., & Triantafillou, T. C. (2005). Masonry confinement with fiber-reinforced polymers. Journal of Composites for Construction, 9(2), 128-135.

DOI: 10.1061/(asce)1090-0268(2005)9:2(128)

Google Scholar

[10] Aiello, M. A., Micelli, F., & Valente, L. (2007). Structural upgrading of masonry columns by using composite reinforcements. Journal of Composites for Construction, 11(6), 650-658.

DOI: 10.1061/(asce)1090-0268(2007)11:6(650)

Google Scholar

[11] Aiello, M. A., Micelli, F., & Valente, L. (2009). FRP confinement of square masonry columns. Journal of composites for construction, 13(2), 148-158.

DOI: 10.1061/(asce)1090-0268(2009)13:2(148)

Google Scholar

[12] Alecci, V., Bati, S. B., & Ranocchiai, G. (2009). Study of brick masonry columns confined with CFRP composite. Journal of Composites for Construction, 13(3), 179-187.

DOI: 10.1061/(asce)1090-0268(2009)13:3(179)

Google Scholar

[13] Di Ludovico, M., D'Ambra, C., Prota, A., & Manfredi, G. (2010). FRP confinement of tuff and clay brick columns: Experimental study and assessment of analytical models. Journal of Composites for Construction, 14(5), 583-596.

DOI: 10.1061/(asce)cc.1943-5614.0000113

Google Scholar

[14] Faella, C., Martinelli, E., Paciello, S., Camorani, G., Aiello, M. A., Micelli, F., & Nigro, E. (2011). Masonry columns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 42(4), 692-704.

DOI: 10.1016/j.compositesb.2011.02.001

Google Scholar

[15] Micelli, F., Di Ludovico, M., Balsamo, A., & Manfredi, G. (2014). Mechanical behaviour of FRP-confined masonry by testing of full-scale columns. Materials and structures, 47(12), 2081-2100.

DOI: 10.1617/s11527-014-0357-9

Google Scholar

[16] Witzany, J., Čejka, T., & Zigler, R. (2014). Failure mechanism of compressed short brick masonry columns confined with FRP strips. Construction and Building materials, 63, 180-188.

DOI: 10.1016/j.conbuildmat.2014.04.041

Google Scholar

[17] Valdés, M., Concu, G., & De Nicolo, B. (2014). FRP Strengthening of Masonry Columns: Experimental Tests and Theoretical Analysis. Key Engineering Materials, 624.

DOI: 10.4028/www.scientific.net/kem.624.603

Google Scholar

[18] A. Balsamo; G. Maddaloni; F. Micelli; A. Prota; G. Melcangi (2018). Experimental behaviour of full scale masonry columns confined with FRP or FRCM systems,, REHABEND 2018 Euro-American Congress on Construction Pathology, Rehabilitation Technology and Heritage Management, Caceres, Spagna, Maggio (2018).

DOI: 10.4028/www.scientific.net/kem.747.374

Google Scholar

[19] Cascardi, A., Micelli, F., & Aiello, M. A. (2017). An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns. Engineering Structures, 140, 199-208.

DOI: 10.1016/j.engstruct.2017.02.047

Google Scholar

[20] Cascardi, A., Micelli, F., & Aiello, M. A. (2016). Unified model for hollow columns externally confined by FRP. Engineering Structures, 111, 119-130.

DOI: 10.1016/j.engstruct.2015.12.032

Google Scholar

[21] Minafò, G., D'Anna, J., Cucchiara, C., Monaco, A., & La Mendola, L. (2017). Analytical stress-strain law of FRP confined masonry in compression: Literature review and design provisions. Composites Part B: Engineering, 115, 160-169.

DOI: 10.1016/j.compositesb.2016.10.019

Google Scholar

[22] UNI, 2000. UNI EN 1926: Metodi di prova per pietre naturali – Determinazione della resistenza a compressione, Ente Nazionale Italiano di Unificazione, Milano.

Google Scholar

[23] UNI, 2001. UNI EN 1015-11: Metodi di prova per malte per opere murarie – Determinazione della resistenza a flessione e a compressione della malta indurita, Ente Nazionale Italiano di Unificazione, Milano.

Google Scholar

[24] ASTM D3039 / D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, (2017).

Google Scholar

[25] CNR-DT 200 R1 (2012) Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Italian Council of Research (CNR), Rome.

Google Scholar

[26] Zeng, J. J., Guo, Y. C., Gao, W. Y., Chen, W. P., & Li, L. J. (2018). Stress-strain behavior of concrete in circular concrete columns partially wrapped with FRP strips. Composite Structures, 200, 810-828.

DOI: 10.1016/j.compstruct.2018.05.001

Google Scholar