[1]
Reboul, N., Mesticou, Z., Si Larbi, A., Ferrier, E. Experimental study of the in-plane cyclic behaviour of masonry walls strengthened by composite materials. Construction and Building Materials 164 (2018) 70-83.
DOI: 10.1016/j.conbuildmat.2017.12.215
Google Scholar
[2]
Minafò, G., Cucchiara, C., Monaco, A., La Mendola, L. Effect of FRP strengthening on the flexural behaviour of calcarenite masonry walls. Bulletin of Earthquake Engineering 15 (2017) 3777-3795.
DOI: 10.1007/s10518-017-0112-z
Google Scholar
[3]
Gentilini, C., Franzoni, E., Santandrea, M., Carloni, C. Salt-induced deterioration on FRP-brick masonry bond. RILEM Bookseries 18 (2019) 1914-1921.
DOI: 10.1007/978-3-319-99441-3_205
Google Scholar
[4]
D'Altri, A. M., Carloni, C., Miranda, S. D., Castellazzi, G. Numerical modeling of FRP strips bonded to a masonry substrate. Composite Structures 200 (2018) 420-433.
DOI: 10.1016/j.compstruct.2018.05.119
Google Scholar
[5]
Askouni, P.D., Papanicolaou, C.C.G. Comparison of double-lap/double-prism and single-lap/single-prism shear tests for the TRM-to-masonry bond assessment, RILEM Bookseries 15 (2018) 527-534.
DOI: 10.1007/978-94-024-1194-2_61
Google Scholar
[6]
Maljaee, H., Ghiassi, B., Lourenço, P., Oliveira, D. FRP–brick masonry bond degradation under hygrothermal conditions. Composite Structures, 147 (2016) 143-154.
DOI: 10.1016/j.compstruct.2016.03.037
Google Scholar
[7]
Ebead, U., Adel Y. Pull-off characterization of FRCM/Concrete interface. Composites Part B: Engineering 165 (2019) 545–553.
DOI: 10.1016/j.compositesb.2019.02.025
Google Scholar
[8]
Carozzi, F. G., Poggi, C. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening. Composites Part B: Engineering 70 (2015) 215-230.
DOI: 10.1016/j.compositesb.2014.10.056
Google Scholar
[9]
Ghiassi, B., Oliveira, D. V., Lourenço, P. B., Marcari, G. Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry. Composites Part B: Engineering 46 (2013) 21-30.
DOI: 10.1016/j.compositesb.2012.10.017
Google Scholar
[10]
CNR-DT 215/2018. Istruzioni per la progettazione, l'esecuzione ed il controllo di interventi di consolidamento statico mediante l'utilizzo di compositi fibrorinforzati a matrice inorganica.
Google Scholar
[11]
EN 1542:1999. Products and systems for the protection and repair of concrete structures. Test methods. Measurement of bond strength by pull-off.
DOI: 10.3403/01706822u
Google Scholar
[12]
ASTM C1583/C1583M-13. Test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method).
DOI: 10.1520/c1583_c1583m-20
Google Scholar
[13]
EN 12390-6:2009 Testing hardened concrete. Tensile splitting strength of test specimens.
DOI: 10.3403/02128962
Google Scholar
[14]
M. Baldassari. Energia di Frattura (GF) per Modo-I di Laterizi e Pietre Naturali, [Dissertation thesis in Italian], University of Bologna, Bachelor program in Building Engineering, (2016).
Google Scholar
[15]
http://products.kerakoll.com/catalogo_dett.asp?idp=7590 GeoSteel G600.
Google Scholar
[16]
http://products.kerakoll.com/catalogo_dett.asp?idp=7586 Geolite Gel.
Google Scholar
[17]
Franzoni, E., Gentilini, C., Graziani, G., Bandini, S. Compressive behaviour of brick masonry triplets in wet and dry conditions. Construction and Building Materials 82 (2015) 45-52.
DOI: 10.1016/j.conbuildmat.2015.02.052
Google Scholar