Mechanical Behaviour of Masonry Panels Strengthened by Flax TRM Systems

Article Preview

Abstract:

Among the existing techniques to retrofit and reinforce masonry elements, the use of Textile Reinforced Mortar (TRM) composite systems represents these days an efficient and compatible solution. Aiming to improve the sustainability of these composite systems, the efficiency of plant fibres as reinforcement fabric of TRMs is analysed in the present study. Specifically, relying on previous works concerning the mechanical characterisation of the system on a local scale, it proposes an experimental analysis on a greater scale of investigation. Clay bricks masonry panels (1 x 1 x 0,12 m3) strengthened by a Flax-TRM system (hydraulic lime-based matrix) were subjected to diagonal compression tests. Two strengthening configurations characterized by one and two layers of flax fabric were tested. The reinforcement was applied all over the surface of both the panel sides. The response of the externally strengthened walls is examined and compared herein with that of unstrengthened walls. The results show that the reinforcing system strongly influences the performance of the walls by conferring them a post-peak behaviour totally absent in the brittle response typical of unstrengthened walls. In terms of peak load, an increase of the 118% and 136% is observed respectively in panels externally strengthened with one and two layers of textile, with respect to the unstrengthened walls. The experimental study confirms a considerable potential in the use of plants fibres as reinforcement of TRM composite systems for the strengthening of masonry elements and paves the way for further investigation aimed to improve their mechanical behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-434

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Grüntal, R. Wahlström, The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium, J Seismol 16 (2012) 535-570.

DOI: 10.1007/s10950-012-9302-y

Google Scholar

[2] P.G. Asteris, M.P. Chronopoulos, C.Z. Chrysostomou, H. Varum, V. Plevris, N. Kyriakides, V. Silva, Seismic vulnerability assessment of historical masonry structural systems, Engineering Structures 62-63 (2014) 118-134.

DOI: 10.1016/j.engstruct.2014.01.031

Google Scholar

[3] M. Tomaževič, Eartquake-resistant design of masonry buildings, Series on Innovation in Structures and Construction – Vol 1, Imperial College Press, London, (1999).

Google Scholar

[4] A. D'Ambrisi, F. Focacci, A. Caporale, Strengthening of masonry-unreinforced concrete railway bridges with PBO-FRCM materials, Composite Structures 102 (2013) 193-204.

DOI: 10.1016/j.compstruct.2013.03.002

Google Scholar

[5] RILEM Technical Committee (W. Brameshuber), Recommendation of RILEM TC 232-TDT: test methods and design of textile reinforced concrete, Materials and Structures 49 (2016) Nr.5.

DOI: 10.1617/s11527-016-0839-z

Google Scholar

[6] G. De Felice, M.A .Aiello, C. Caggegi, F. Ceroni, S. De Santis, E. Garbin, N. Gattesco, L. Hojdys, P. Krajewsky, A. Kwiecien, M. Leone, G.P. Lignola, C. Mazzotti, D. Oliveira, C. Papanicolau, C. Poggi, T. Triantafillou, M.R. Valluzzi, A. Viskovic, Recommendation of RILEM Technical Committee 250-CSM: Test method for Textile Reinforced Mortar to substrate bond characterization, Materials and Structures 2018 51:95.

DOI: 10.1617/s11527-018-1216-x

Google Scholar

[7] C. Caggegi, F.G. Carozzi, S. De Santis, F. Fabbrocino, F. Focacci, L. Hojdys, E. Lanoye, L. Zuccarino, Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures, Composites Part B 127 2017 175-195.

DOI: 10.1016/j.compositesb.2017.05.048

Google Scholar

[8] F.G. Carozzi, A. Bellini, T. D'Antino, G. de Felice, F. Focacci, L. Hojdys, L. Laghi, E. Lanoye, F. Micelli, M. Panizza, C. Poggi, Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements, Composites Part-B 128 2017 100-119.

DOI: 10.1016/j.compositesb.2017.06.018

Google Scholar

[9] G.P. Lignola, C. Caggegi, F. Ceroni, S. De Santis, P. Krajewsky, P.B. Lourenço, M. Morganti, C. Papanicolaou, C. Pellegrino, A. Prota, L. Zuccarino, Performance assessment of basalt FRCM for retrofit applications on masonry, Composites Part B 128 2017 1-18.

DOI: 10.1016/j.compositesb.2017.05.003

Google Scholar

[10] M. Leone, M. A. Aiello, A. Blasamo, F.G. Carozzi, F. Ceroni, M. Corradi, M. Gams, E. Garbin, N. Gattesco, P. Krajewski, C. Mazzotti, D. Oliveira, C. Papanicolaou, G, Ranocchiai, F. Roscini, D. Saenger, Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate, Composites Part B 127 (2017) 196-214.

DOI: 10.1016/j.compositesb.2017.06.028

Google Scholar

[11] G. Marcari, M. Basili, F. Vestroni, Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar, Composites Part B 108 2017 131-142.

DOI: 10.1016/j.compositesb.2016.09.094

Google Scholar

[12] S.L. Sagar, V. Singhal, D.C. Rai, M. ASCE, P. Gudur, Diagonal shear out-of-plane flexural strength of fabric-reinforced cementitious matrix-strengthened masonry walls, Journal of Composite Constructions 10.1061/(ASCE)CC.1943-5614.0000796.

DOI: 10.1061/(asce)cc.1943-5614.0000796

Google Scholar

[13] O.A. Cevallos, R.S. Olivito, Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites, Composites Part B 69 (2015) 256-266.

DOI: 10.1016/j.compositesb.2014.10.004

Google Scholar

[14] G. Ferrara, M. Pepe, E. Martinelli, R.D. Toledo Filho, Influence of an impregnation treatment on the morphology and mechanical behaviour of flax yarns embedded in hydraulic lime mortar, Fibers 7(4) (2019) 30.

DOI: 10.3390/fib7040030

Google Scholar

[15] S.R. Ferreira, F. de Andreade Silva, P.R.L. Lima, R.D. Toledo Filho, Effect of hornification on the structure, tensile behaviour and fiber matrix bond sisal, jute and curaua fiber cement based composite systems, Construction and Building Materials 139 (2017) 155-161.

DOI: 10.1016/j.conbuildmat.2016.10.004

Google Scholar

[16] R. Codispoti, D.V. Oliveira, R.S. Olivito, P.B. Lourenco, R. Fangueiro, Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry, Composites Part B 77 (2015) 74-83.

DOI: 10.1016/j.compositesb.2015.03.021

Google Scholar

[17] G. Ferrara, B. Coppola, L. Di Maio, L. Incarnato, E. Martinelli, Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: experimental tests under different environmental exposures, Composites Part B 168 (2019) 511-523.

DOI: 10.1016/j.compositesb.2019.03.062

Google Scholar

[18] EN 196-1:1994. Methods of testing cement – Part 1: Determination of Strength. European Committee for Standardization (1994).

Google Scholar

[19] G. Ferrara, E. Martinelli, Tensile behaviour of Textile Reinforced Mortar composite systems with flax fibres, Proc. of the 12th fib International PhD Symposium in Civil Engineering Aug 29 to 31, 2018, Czech Technical University in Prague, Prague, Czech Republic.

DOI: 10.46720/f2020-mml-058

Google Scholar

[20] RILEM LUMB6, Diagonal tensile strength tests of small wall specimens, RILEM recommendations for the testing and use of constructions materials, 1994 488–9.

DOI: 10.1201/9781482271362-309

Google Scholar