AE Damage Assessment in the Bell Tower of the Turin Cathedral

Article Preview

Abstract:

Historical churches, masonry towers and bell towers are structures subjected to high risk, due to their age, elevation and low base area on height ratio. In this work, an innovative monitoring technique for structural integrity assessment of historical buildings is reported. At the same time, the emblematic case study of the Turin Cathedral Bell tower is presented. The damage evolution in the tall masonry structure is described by the evaluation of the cumulative number of AE and by different parameters able to predict the time dependence of damage. In particular, since environmental disturbances have been minimized, and instrumental noises have been filtered out. The b-value analysis shows a downward trend to values compatible with the growth of localized macro-cracks at the base of the tower. These results seem to be in good agreement with the numerical analysis. Extension to longer monitoring periods and, later, investigation of different segments are strongly recommended to assess the stability of the monument.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-585

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. G. Aggelis, A. C. Mpalaskas, T. E Matikas, Investigation of different fracture modes in cement-based materials by acoustic emission, Cement Concrete Res., 48 (2013) 1–8.

DOI: 10.1016/j.cemconres.2013.02.002

Google Scholar

[2] K. Aki, A probabilistic synthesis of precursory phenomena, in: Earthquake Prediction, edited by: Simpson, D. W. and Richards, P. G., American Geophysical Union, Washington, D.C., USA, (1981) 566–574.

DOI: 10.1029/me004p0566

Google Scholar

[3] P. Bak, C. Tang, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res., 94, (1989) 15635–15637.

DOI: 10.1029/jb094ib11p15635

Google Scholar

[4] M. Ohtsu, T.,Okamoto, S. Yuyama, Moment tensor analysis of acoustic emission for cracking mechanisms in concrete, ACI Struct. J., 95 81998) 87–95.

DOI: 10.14359/529

Google Scholar

[5] P. Bak, K. Christensen, L. Danon, T. Scanlon, Unified scaling law for earthquakes, Phys. Rev. Lett., 88, 178501, https://doi.org/10.1103/PhysRevLett.88.178501, (2002).

DOI: 10.1103/physrevlett.90.109901

Google Scholar

[6] A. Carpinteri, G. Lacidogna, Structural monitoring and integrity assessment of medieval towers, J. of Struct. Eng.(ASCE), 132 (2006) 1681-1690.

DOI: 10.1061/(asce)0733-9445(2006)132:11(1681)

Google Scholar

[7] A. Carpinteri, G. Lacidogna (2007) Damage evaluation of three masonry towers by acoustic emission. Eng. Struc., 29 (2007) 1569-1579.

DOI: 10.1016/j.engstruct.2006.08.008

Google Scholar

[8] A. Carpinteri, G. Lacidogna, (2008), Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics, CRC Press, Boca Raton.

DOI: 10.1201/9780203892220.ch13

Google Scholar

[9] A. Anzani, L. Binda, L., A. Carpinteri, G. Lacidogna, A. Manuello, Evaluation of the repair on multiple leaf stone masonry by acoustic emission. Mat. and Struct. (RILEM), 41 (2008) 1169-1189.

DOI: 10.1617/s11527-007-9316-z

Google Scholar

[10] A. Carpinteri, G. Lacidogna, G., Manuello, A,, Niccolini, G. (2016) A study on the structural stability of the Asinelli Tower in Bologna, Struct. Cont. and Health Monit., 23: 659-667.

DOI: 10.1002/stc.1804

Google Scholar

[11] C. A. Costa de Beauregard, Familles historiques de Savoie. Les Seigneurs de Compey, Puthod, Chambéry 1884.

Google Scholar

[12] G. Gentile, «Io maestro Meo di Francescho Fiorentino...». Documenti per il cantiere del Duomo di Torino, in Romano, Giovanni, Domenico della Rovere e il Duomo nuovo di Torino: Rinascimento a Roma e in Piemonte, Cassa di risparmio di Torino, Torino 1990, 107-200.

DOI: 10.2307/j.ctv2sbm7v5.11

Google Scholar

[13] G. Niccolini, A. Carpinteri A. Manuello, E. Marchis (2017) Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi. Nat. Haz. and Earth Syst. Sci., 17 (2017) 1025-1032.

DOI: 10.5194/nhess-17-1025-2017

Google Scholar

[14] D. Masera, P. Bocca, A. Grazzini Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures. J. Phys.: Conf. Ser. 305 (2011) 1-10.

DOI: 10.1088/1742-6596/305/1/012134

Google Scholar

[15] F. Omori, On aftershocks, Rep. Imp. Earthquake Invest. Comm., 2 (1894) 103–109.

Google Scholar

[16] C. F. Richter, Elementary Seismology, W. H. Freeman and Company, San Francisco, USA and London, UK, (1958).

Google Scholar

[17] A. Carpinteri, G. Lacidogna, G. Niccolini, S. Puzzi, Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica 43 (2008) 349–363.

DOI: 10.1007/s11012-007-9101-7

Google Scholar