Health Monitoring of Medieval Masonry Towers by an Acoustic Emission Approach

Article Preview

Abstract:

Non-destructive tests were performed to assess cracking evolution in two medieval masonry buildings, Sineo and Asinelli towers rising respectively in the Cities of Alba and Bologna, in Italy. As regards the case study of Alba, in situ compressive flat-jack tests on small-sized elements of the tower were conducted in conjunction with acoustic emission (AE) monitoring. At the same time, crack patterns taking place in large volumes of the tower were likewise monitored through the AE technique.As for the case study of Bologna, a masonry wall of the Asinelli tower was monitored during a period of intense seismic activity. The observed correlation between the AE activity in the monitored structural element and local earthquakes points out a significant dependence of deterioration processes in the tower on the action of nearby earthquakes.In both cases, the trends of two evolutionary parameters, the b-value and the natural time (NT) variance κ1, were derived from the AE time series to identify the approach of the monitored structures to a critical state in relation to the earthquake occurrence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

586-593

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Shah, S.P.; Z. Li, Localization of microcracking in concrete under uniaxial tension, ACI Mater. J. 91 (1994), 372-381.

DOI: 10.14359/4052

Google Scholar

[2] M. Ohtsu M., The history and development of acoustic emission in concrete engineering, Mag. Concrete Res. 48 (1996), 321-330.

DOI: 10.1680/macr.1996.48.177.321

Google Scholar

[3] A. Carpinteri, G. Lacidogna, Structural monitoring and integrity assessment of medieval towers, J. Struct Eng-ASCE. 132 (2006) 1681-1690.

DOI: 10.1061/(asce)0733-9445(2006)132:11(1681)

Google Scholar

[4] A. Carpinteri, G. Lacidogna, Damage evaluation of three masonry towers by acoustic emission, Eng. Struct. 29 (2007) 1569-1579.

DOI: 10.1016/j.engstruct.2006.08.008

Google Scholar

[5] A. Carpinteri, G. Lacidogna, N. Pugno, Structural damage diagnosis and life-time assessment by acoustic emission monitoring, Eng. Fract. Mech. 74 (2007), 273-289.

DOI: 10.1016/j.engfracmech.2006.01.036

Google Scholar

[6] ASTM. Standard test method for in situ compressive stress within solid unit masonry estimated using flat-jack measurements, ASTM C1196-91, Philadelphia; (1991).

DOI: 10.1520/c1196-09

Google Scholar

[7] L. Binda, E. Bertocchi, D. Trussardi, Torri in muratura, Una metodologia per la valutazione della sicurezza, Recupero e Conservazione 18 (1997), 26-34 [in Italian].

Google Scholar

[8] A.A. Pollock, Acoustic emission-2: Acoustic emission amplitudes, Non-Destructive Testing 6 (1973), 264-269.

DOI: 10.1016/0029-1021(73)90074-1

Google Scholar

[9] A. Carpinteri, G. Lacidogna, G. Niccolini, Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors, Nat. Hazards Earth Syst. Sci. 7 (2007) 251-261.

DOI: 10.5194/nhess-7-251-2007

Google Scholar

[10] D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, (1997).

Google Scholar

[11] E. Bonnet, O. Bour, N.E. Odling, P. Davy, I.P. Main, P. Cowie, B. Berkowitz, Scaling of fracture systems in geological media, Rev. Geophys. 39 (2001), 347-383.

DOI: 10.1029/1999rg000074

Google Scholar

[12] A. Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials, Int. J. Solids & Structures 31(3) (1994), 291-302.

DOI: 10.1016/0020-7683(94)90107-4

Google Scholar

[13] A Carpinteri,. G. Lacidogna, F. Accornero, A. Mpalaskas, T.E. Matikas, D.G. Aggelis, Influence of damage in the acoustic emission parameters, Cement Concrete Comp. 44 (2013), 9-16.

DOI: 10.1016/j.cemconcomp.2013.08.001

Google Scholar

[14] P.A. Varotsos, N.V Sarlis., E.S. Skordas, Natural Time Analysis: The New View of Time; Springer, Berlin/Heidelberg, Germany, (2011).

Google Scholar

[15] P.A. Varotsos, N.V Sarlis., E.S. Skordas, Uyeda, S.; Kamogawa, M. Natural time analysis of critical phenomena. Proc. Natl. Acad. Sci. USA 108 (2011), 11361-11364.

DOI: 10.1073/pnas.1108138108

Google Scholar

[16] G. Hloupis, I. Stavrakas, E.D. Pasiou, D. Triantis, S.K. Kourkoulis, Natural time analysis of acoustic emissions in Double Edge Notched Tension (DENT) marble specimens, Procedia Eng. 109 (2015), 248-256.

DOI: 10.1016/j.proeng.2015.06.226

Google Scholar

[17] A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A study on the structural stability of the Asinelli Tower in Bologna, Struct. Control Health Monit. 23 (2016), 659-667.

DOI: 10.1002/stc.1804

Google Scholar

[18] A. Carpinteri, G. Niccolini, G. Lacidogna, Time Series Analysis of Acoustic Emissions in the Asinelli Tower during Local Seismic Activity, Appl. Sci. Journal 8(7) (2018), 1012-1021.

DOI: 10.3390/app8071012

Google Scholar

[19] A. Cecchi, A. Tralli, A homogenized viscoelastic model for masonry structures, Int. J. Solids Struct. 49 (2012), 1485-1496.

DOI: 10.1016/j.ijsolstr.2012.02.034

Google Scholar

[20] R.H. Pritchard, E.M. Terentjev, Oscillations and damping in the fractional Maxwell materials, J. Rheol. 61 (2017), 187-203.

DOI: 10.1122/1.4973957

Google Scholar

[21] C.F. Richter, Elementary Seismology, W.H. Freeman and Company: San Francisco, CA, USA, London, UK, (1958).

Google Scholar

[22] T. Shiotani, K. Fujii, T. Aoki, K. Amou, K., Evaluation of progressive failure using AE sources and improved b-value on slope model tests, Prog. Acoust. Emiss. VII (1994), 529-534.

Google Scholar

[23] P.R. Sammonds, P.G. Meredith, S.A.F. Murrel, I.G. Main, Modeling the evolution of damage in rock containing porefluid by acoustic emission, in: Proceedings of the Eurock'94, Delft, The Netherlands, 29–31 August (1994).

Google Scholar

[24] S. Colombo, I.G. Main, M.C. Forde, Assessing damage of reinforced concrete beam using b-value, analysis of acoustic emission signals, J. Mater. Civil Eng. ASCE 15 (2003), 280-286.

DOI: 10.1061/(asce)0899-1561(2003)15:3(280)

Google Scholar

[25] G.P. Gregori, G. Paparo, M. Poscolieri, A. Zanini, Acoustic emission and released seismic energy, Nat. Hazards Earth Syst. Sci. 5 (2005), 777-782.

DOI: 10.5194/nhess-5-777-2005

Google Scholar

[26] A. Carpinteri, G. Lacidogna, G. Niccolini, N. Pugno, Morphological fractal dimension versus power-law exponent in the scaling of damaged media, Int. J. Damage Mech. 18 (2009) 259-282.

DOI: 10.1177/1056789508098700

Google Scholar

[27] A. Anzani, L. Binda, A. Carpinteri, G. Lacidogna, A. Manuello, Evaluation of the repair on multiple leaf stone masonry by acoustic emission, Mater. Struct. 41 (2008), 1169-1189.

DOI: 10.1617/s11527-007-9316-z

Google Scholar