[1]
S.P. Shah, S.P.; Z. Li, Localization of microcracking in concrete under uniaxial tension, ACI Mater. J. 91 (1994), 372-381.
DOI: 10.14359/4052
Google Scholar
[2]
M. Ohtsu M., The history and development of acoustic emission in concrete engineering, Mag. Concrete Res. 48 (1996), 321-330.
DOI: 10.1680/macr.1996.48.177.321
Google Scholar
[3]
A. Carpinteri, G. Lacidogna, Structural monitoring and integrity assessment of medieval towers, J. Struct Eng-ASCE. 132 (2006) 1681-1690.
DOI: 10.1061/(asce)0733-9445(2006)132:11(1681)
Google Scholar
[4]
A. Carpinteri, G. Lacidogna, Damage evaluation of three masonry towers by acoustic emission, Eng. Struct. 29 (2007) 1569-1579.
DOI: 10.1016/j.engstruct.2006.08.008
Google Scholar
[5]
A. Carpinteri, G. Lacidogna, N. Pugno, Structural damage diagnosis and life-time assessment by acoustic emission monitoring, Eng. Fract. Mech. 74 (2007), 273-289.
DOI: 10.1016/j.engfracmech.2006.01.036
Google Scholar
[6]
ASTM. Standard test method for in situ compressive stress within solid unit masonry estimated using flat-jack measurements, ASTM C1196-91, Philadelphia; (1991).
DOI: 10.1520/c1196-09
Google Scholar
[7]
L. Binda, E. Bertocchi, D. Trussardi, Torri in muratura, Una metodologia per la valutazione della sicurezza, Recupero e Conservazione 18 (1997), 26-34 [in Italian].
Google Scholar
[8]
A.A. Pollock, Acoustic emission-2: Acoustic emission amplitudes, Non-Destructive Testing 6 (1973), 264-269.
DOI: 10.1016/0029-1021(73)90074-1
Google Scholar
[9]
A. Carpinteri, G. Lacidogna, G. Niccolini, Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors, Nat. Hazards Earth Syst. Sci. 7 (2007) 251-261.
DOI: 10.5194/nhess-7-251-2007
Google Scholar
[10]
D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, (1997).
Google Scholar
[11]
E. Bonnet, O. Bour, N.E. Odling, P. Davy, I.P. Main, P. Cowie, B. Berkowitz, Scaling of fracture systems in geological media, Rev. Geophys. 39 (2001), 347-383.
DOI: 10.1029/1999rg000074
Google Scholar
[12]
A. Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials, Int. J. Solids & Structures 31(3) (1994), 291-302.
DOI: 10.1016/0020-7683(94)90107-4
Google Scholar
[13]
A Carpinteri,. G. Lacidogna, F. Accornero, A. Mpalaskas, T.E. Matikas, D.G. Aggelis, Influence of damage in the acoustic emission parameters, Cement Concrete Comp. 44 (2013), 9-16.
DOI: 10.1016/j.cemconcomp.2013.08.001
Google Scholar
[14]
P.A. Varotsos, N.V Sarlis., E.S. Skordas, Natural Time Analysis: The New View of Time; Springer, Berlin/Heidelberg, Germany, (2011).
Google Scholar
[15]
P.A. Varotsos, N.V Sarlis., E.S. Skordas, Uyeda, S.; Kamogawa, M. Natural time analysis of critical phenomena. Proc. Natl. Acad. Sci. USA 108 (2011), 11361-11364.
DOI: 10.1073/pnas.1108138108
Google Scholar
[16]
G. Hloupis, I. Stavrakas, E.D. Pasiou, D. Triantis, S.K. Kourkoulis, Natural time analysis of acoustic emissions in Double Edge Notched Tension (DENT) marble specimens, Procedia Eng. 109 (2015), 248-256.
DOI: 10.1016/j.proeng.2015.06.226
Google Scholar
[17]
A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A study on the structural stability of the Asinelli Tower in Bologna, Struct. Control Health Monit. 23 (2016), 659-667.
DOI: 10.1002/stc.1804
Google Scholar
[18]
A. Carpinteri, G. Niccolini, G. Lacidogna, Time Series Analysis of Acoustic Emissions in the Asinelli Tower during Local Seismic Activity, Appl. Sci. Journal 8(7) (2018), 1012-1021.
DOI: 10.3390/app8071012
Google Scholar
[19]
A. Cecchi, A. Tralli, A homogenized viscoelastic model for masonry structures, Int. J. Solids Struct. 49 (2012), 1485-1496.
DOI: 10.1016/j.ijsolstr.2012.02.034
Google Scholar
[20]
R.H. Pritchard, E.M. Terentjev, Oscillations and damping in the fractional Maxwell materials, J. Rheol. 61 (2017), 187-203.
DOI: 10.1122/1.4973957
Google Scholar
[21]
C.F. Richter, Elementary Seismology, W.H. Freeman and Company: San Francisco, CA, USA, London, UK, (1958).
Google Scholar
[22]
T. Shiotani, K. Fujii, T. Aoki, K. Amou, K., Evaluation of progressive failure using AE sources and improved b-value on slope model tests, Prog. Acoust. Emiss. VII (1994), 529-534.
Google Scholar
[23]
P.R. Sammonds, P.G. Meredith, S.A.F. Murrel, I.G. Main, Modeling the evolution of damage in rock containing porefluid by acoustic emission, in: Proceedings of the Eurock'94, Delft, The Netherlands, 29–31 August (1994).
Google Scholar
[24]
S. Colombo, I.G. Main, M.C. Forde, Assessing damage of reinforced concrete beam using b-value, analysis of acoustic emission signals, J. Mater. Civil Eng. ASCE 15 (2003), 280-286.
DOI: 10.1061/(asce)0899-1561(2003)15:3(280)
Google Scholar
[25]
G.P. Gregori, G. Paparo, M. Poscolieri, A. Zanini, Acoustic emission and released seismic energy, Nat. Hazards Earth Syst. Sci. 5 (2005), 777-782.
DOI: 10.5194/nhess-5-777-2005
Google Scholar
[26]
A. Carpinteri, G. Lacidogna, G. Niccolini, N. Pugno, Morphological fractal dimension versus power-law exponent in the scaling of damaged media, Int. J. Damage Mech. 18 (2009) 259-282.
DOI: 10.1177/1056789508098700
Google Scholar
[27]
A. Anzani, L. Binda, A. Carpinteri, G. Lacidogna, A. Manuello, Evaluation of the repair on multiple leaf stone masonry by acoustic emission, Mater. Struct. 41 (2008), 1169-1189.
DOI: 10.1617/s11527-007-9316-z
Google Scholar