Behaviour of Dense Assemblies of Disks and Ellipses - Study of Particle Shape Effect

Article Preview

Abstract:

In this article, the effect of particle shape is examined from the comparison of results of numerically simulated constant volume compression tests carried out on planes assemblies of disks and ellipses with equal porosity and similar gradation and test conditions. The results show that particle shape is a decisive fabric component that contributes directly and indirectly to the strength of assemblies of particles to resist shearing deformation. The results confirm previously established facts that elongated particle shapes favour particle interlocking and create, more easily than ideal spheres, stable clusters of particles through which external loads can be transferred hence resisting higher shearing stresses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-136

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Horne M.R. The Behaviour of an Assembly of Rotuned Rigid Cohesionless Particles, I and II, Proc. Roy. Soc., London, 1965, Series A, 286, 62-97.

Google Scholar

[2] Mehrabadi M.M., Nemat-Nasser S., Oda M. On Statistical Description of Stress and Fabric in Granular Materials, Int. J. Num. Meth. Geomech., 1982, 6, 95-108.

DOI: 10.1002/nag.1610060107

Google Scholar

[3] Rothenburg L., Selvadurai A.P.S. A Micromechanical Definition of The Cauchy Stress Tensor for Particulate Media, Proc. Int. Symp. Mechanical Behaviour of Structured Media, Ottawa, 1981, A.P.S. Selvadurai (eds.), Part B, 469-486.

Google Scholar

[4] Cundall P.A, Drescher A., Strack O.D.L. Numerical Experiments on Granular Assemblies: Measurements and Observations, Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft, 1982, P.A. Vermeer and H.J. Luger (eds.), Balkema, Rotterdam, 355-370.

Google Scholar

[5] Cundall P.A., Strack O.D.L. A Discrete Numerical Model for Granular Assemblies, Géotechnique, 1979, 29, 1, 47-65.

DOI: 10.1680/geot.1979.29.1.47

Google Scholar

[6] Cundall P.A., Strack, O.D.L. Modelling of Microscopic Mechanisms in Granular Material, Mechanics of Granular Materials: New Model and Constitutive Relations, 1983, J.T. Jenkins and M.Satake (eds.), Elsevier, Amsterdam, 137-149.

DOI: 10.1016/b978-0-444-42192-0.50018-9

Google Scholar

[7] Mirghasemi A.A, Rothenburg L., Matyas E.L. Influence of Particle Shape on Engineering Properties of Assemblies of Two-Dimensional Polygon-Shaped Particles, Géotechnique, 2002, 52 (3), 209-217.

DOI: 10.1680/geot.2002.52.3.209

Google Scholar

[8] Konishi J., Oda M., Nemat-Nasser S. Inherent Anisotropy and Shear Strength of Assembly of Oval Cross-Sectional Rods, Deformation and Failure of Granular Materials, 1982, P.A. Vermeer and H.J. Luger (eds.), Balkema Publishers, 403-412.

DOI: 10.1016/b978-0-444-42192-0.50010-4

Google Scholar

[9] Konishi J., Oda M., Nemat-Nasser S. Induced Anisotropy in Assemblies of Oval Cross-Sectional Rods in Biaxial Compression, Mechanics of Granular Materials: New Models and Constitutive Relations, 1983, J.T. Jenkins and M. Satake, Elsevier Science Publishers B.V., 31-39.

DOI: 10.1016/b978-0-444-42192-0.50010-4

Google Scholar

[10] Oda M. Initial Fabrics and Their Relations to Mechanical Properties of Granular Material, Soils and Foundations, 1972, 12, 1, 17-36.

DOI: 10.3208/sandf1960.12.17

Google Scholar

[11] Oda M., Nemat-Nasser S., Konishi J. Experimental Micromechanical Evaluation of The Strength of Granular Materials: Effects of Particle Rolling, Mechanics of Granular Materials: New Models and Constitutive Relations, 1983, J.T. Jenkins and M. Satake (eds.), Elsevier, Amsterdam, 21-30.[12] Oda M., Nemat-Nasser S., Konishi J. Stress-Induced Anisotropy in Granular Masses, Soils and Foundations, 1985, 25, 3, 85-97.

DOI: 10.1016/b978-0-444-42192-0.50009-8

Google Scholar

[13] Rothenburg L., Bathurst R.J. Numerical Simulation of Idealized Granular Assemblies with Plane Elliptical Particles, Computers and Geotechnics, 1991, 11, 315-329.

DOI: 10.1016/0266-352x(91)90015-8

Google Scholar

[14] Rothenburg L., Bathurst R.J. Micromechanical Features of Granular Assemblies with Planar Elliptical Particles, Géotechnique, 1992, 42, 1, 79-95.

DOI: 10.1680/geot.1992.42.1.79

Google Scholar

[15] Lin X., Ng, T. Numerical Modeling of Granular Soil Using Random Arrays of ThreeDimensional Elastic Ellipsoids, Computer Methods and Advances in Geo-Mechanics, 1994, Siriwardane H.J., Zaman M.M., eds. p.605±10.

Google Scholar

[16] Ouadfel H., Rothenburg L. Stress-Force-Fabric Relationship for Assemblies of Ellipsoids, Journal of Mechanics of Materials, 2001, 33, 4, pp.201-221.

DOI: 10.1016/s0167-6636(00)00057-0

Google Scholar

[17] Cundall P.A. Computer Simulations of Dense Sphere Assemblies, Micromechanics of Granular Materials, 1988, M. Satake and J.T. Jenkins (eds.), Elsevier, Amsterdam, 113-123.

DOI: 10.1016/b978-0-444-70523-5.50021-7

Google Scholar

[18] Mirghasemi A.A, Rothenburg L., Matyas E.L. Effect of Confining pressure on angle of internal friction of simulated granular material, Computer and Advances in Geomechanics, (1994).

Google Scholar

[19] Mirghasemi A.A, Rothenburg L., Matyas E.L. Numerical Simulations of Assemblies of TwoDimensional Polygon-Shaped Particles and Effects of Confining Pressure on Shear Strength, Soils and Foundations, 1997, 37 (3), 43-52.

DOI: 10.3208/sandf.37.3_43

Google Scholar

[20] Ouadfel H., Rothenburg L. An Algorithm for Inter-Ellipsoid Contact Detection, Journal of Computers and Geotechnics, 1999, 24, 4, 245-263.

DOI: 10.1016/s0266-352x(99)00013-0

Google Scholar

[21] Mindlin R.D., Deresiewicz H. Elastic Spheres in Contact Under Varying Oblique Forces, J. Appl. Mech., 1953, ASME, 21, 327-344.

DOI: 10.1115/1.4010702

Google Scholar

[22] Thornton C., Rundall C.W. Applications of theoretical contact mechanics to solid particle system simulations, Micromechanics of Granular Materials, 1988, M. Satake and J.T. Jenkins (eds.), Elsevier, Amsterdam, 245-252.

Google Scholar

[23] Dantu P. Contribution à L'Etude Mécanique et Géométrique des Milieux Pulvérulents, Proc. 4th Int. Conf. Soil Mech. Found. Eng., London, 1957, 1, 144-148.

Google Scholar

[24] Rothenburg L., Bathurst R.J. Influence of Particle eccentricity on Micromechanical Behavior of Granular Materials, Mechanics of Materials, 1993, 16, 1-2, 141-152.

DOI: 10.1016/0167-6636(93)90037-r

Google Scholar

[25] Williams J.R., Rege N. The development of circulation cell structures in granular materials undergoing compression, Powder Technology, 1997, 90(3), 187-194.

DOI: 10.1016/s0032-5910(96)03201-9

Google Scholar

[26] Satake M. Constitution of Mechanics of Granular Materials Through The Graph Theory". Proc. U.S-Jap. Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, 1978, 47-62.

Google Scholar

[27] Bathurst R.J., Rothenburg L. Investigation of Anisotropic Assemblies of Plane Elliptical Particles, Numerical Models in Geomechanics, 1992, Pande & Pietruszczak (eds.), Balkema, Rotterdam, 47-54.

Google Scholar