Estimation of the Fatigue Curve of a Wire Rope at Different Scales

Article Preview

Abstract:

The wire rope 19 × 7 is a complex component, it consists of 18 strands in helical from around a central core strand, each strand consist of a 7 wires laid in helical. The friction in wire rope between wire and wire decrease its lifetime. For that, this study is an attempt to present a simplified approach to predict the lifetime of cable in three scale (wire, strand, cable) using unified theory and the Basquin's law, at the level of the strand scale we have estimated its fatigue behavior in the initiation phase and also within the number of the cycle to failure as well as the ratio of the number of cycles to crack initiation Ni to the number of cycles to failure, we based on the tensile test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-96

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang, D., Li, X., Wang, X., & Zhang, D. (2016). Dynamic wear evolution and crack propagation behaviors of steel wires during fretting-fatigue. Tribology International, 101, 348-355.

DOI: 10.1016/j.triboint.2016.05.003

Google Scholar

[2] Perier, V. (2010). Etude de l'influence des conditions environnementales sur le comportement en fretting, fatigue et fretting-fatigue des câbles du génie civil (Doctoral dissertation, ECOLE CENTRALE DE LYON).

Google Scholar

[3] Wang, D., Zhang, D., & Ge, S. (2011). Fretting–fatigue behavior of steel wires in low cycle fatigue. Materials & Design, 32(10), 4986-4993.

DOI: 10.1016/j.matdes.2011.06.037

Google Scholar

[4] Zhao, D., Liu, S., Xu, Q., Shi, F., Sun, W., & Chai, L. (2017). Fatigue life prediction of wire rope based on stress field intensity method. Engineering Failure Analysis, 81, 1-9.

DOI: 10.1016/j.engfailanal.2017.07.019

Google Scholar

[5] Wang, D., Zhang, D., & Ge, S. (2014). Effect of terminal mass on fretting and fatigue parameters of a hoisting rope during a lifting cycle in coal mine. Engineering failure analysis, 36, 407-422.

DOI: 10.1016/j.engfailanal.2013.11.006

Google Scholar

[6] CRUZADO, A., LEEN, S. B., URCHEGUI, M. A., et al. Finite element simulation of fretting wear and fatigue in thin steel wires. International Journal of Fatigue, 2013, vol. 55, pp.7-21.

DOI: 10.1016/j.ijfatigue.2013.04.025

Google Scholar

[7] Urchegui, M. A., Tato, W., & Gómez, X. (2008). Wear evolution in a stranded rope subjected to cyclic bending. Journal of Materials Engineering and Performance, 17(4), 550-560.

DOI: 10.1007/s11665-007-9165-5

Google Scholar

[8] Petit, J., & Sarrazin-Baudoux, C. (2015). Fatigue Crack Propagation in Thin Wires of Ultra-High Strength Steel. In Key Engineering Materials (Vol. 627, pp.153-156). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/kem.627.153

Google Scholar

[9] Beretta, S., & Boniardi, M. (1999). Fatigue strength and surface quality of eutectoid steel wires. International Journal of Fatigue, 21(4), 329-335.

DOI: 10.1016/s0142-1123(98)00082-6

Google Scholar

[10] Lipski, A., & Mroziński, S. (2012). Approximate determination of a strain-controlled fatigue life curve for aluminum alloy sheets for aircraft structures. International Journal of Fatigue, 39, 2-7.

DOI: 10.1016/j.ijfatigue.2011.08.007

Google Scholar

[11] Weihsmann, P. R. (1980). Fatigue curves without testing. MATER ENG, 91(3), 52-54.

Google Scholar

[12] Meggiolaro, M. A., & Castro, J. T. P. (2004). Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue, 26(5), 463-476.

DOI: 10.1016/j.ijfatigue.2003.10.003

Google Scholar

[13] Dubuc, J., Thang, B. Q., Bazergui, A., & Biron, A. (1971). Unified theory of cumulative damage in metal fatigue(Cumulative damage in metal fatigue, suggesting unified theory applicable to stress or strain controlled conditions). WRC Bulletin, 1-20.

DOI: 10.1115/1.3425328

Google Scholar

[14] Bathias, C. (Ed.). (2013). Fatigue of materials and structures: application to design. John Wiley & Sons.

Google Scholar

[15] Gatts, R. R. (1961). Application of a cumulative damage concept to fatigue. Journal of Basic Engineering, 83(4), 529-534.

DOI: 10.1115/1.3662256

Google Scholar

[16] Amzallag, C. (1982). Low-cycle fatigue and life prediction. ASTM International.

Google Scholar

[17] Quoc, T. B., Dubuc, J., Bazergui, A., & Biron, A. (1971). Cumulative fatigue damage under stress-controlled conditions. Journal of Basic Engineering, 93(4), 691-698.

DOI: 10.1115/1.3425328

Google Scholar

[18] Bazergui, A. (2002). Résistance des matériaux. Presses inter Polytechnique.

Google Scholar

[19] Wahid, A., Mouhib, N., Kartouni, A., Chakir, H., & ELghorba, M. (2019). Energy method for experimental life prediction of central core strand constituting a steel wire rope. Engineering Failure Analysis, 97, 61-71.

DOI: 10.1016/j.engfailanal.2018.12.005

Google Scholar

[20] Norme ISO 6892 «Matériaux métalliques – Fils – Essai de traction» (1984).

Google Scholar

[21] Norme Européénne EN 12385-1« Cables en acier .Partie 1:Prescriptions générales»(2002).

Google Scholar

[22] Tijani, A., Elghorba, M., Chaffoui, H., Mouhib, N., & Boudlal, E. (2016). Experimental life prediction of a 1+ 6 strand extracted from a 19x7 wire rope. IPASJ Int. J. Mech. Eng, 4(3), 23-29.

Google Scholar

[23] Grosskreutz, J. C. (1971). Fatigue mechanisms in the sub-creep range. In Metal Fatigue Damage: Mechanism, Detection, Avoidance, and Repair. ASTM International.

DOI: 10.1520/stp26684s

Google Scholar

[24] J. NATTAJ, M.SAFE, F.MAJID, H. CHAFFOUI&M. ELGHORBA.(2016).Characterization and reliability of A36 steel under alternating dynamic and static loading. IPASJ Int. J. Mech.

Google Scholar

[25] Mouradi, H., El Barkany, A., & El Biyaali, A. (2018). Steel wire ropes failure analysis: Experimental study. Engineering Failure Analysis, 91, 234-242.

DOI: 10.1016/j.engfailanal.2018.04.019

Google Scholar