[1]
Wang, D., Li, X., Wang, X., & Zhang, D. (2016). Dynamic wear evolution and crack propagation behaviors of steel wires during fretting-fatigue. Tribology International, 101, 348-355.
DOI: 10.1016/j.triboint.2016.05.003
Google Scholar
[2]
Perier, V. (2010). Etude de l'influence des conditions environnementales sur le comportement en fretting, fatigue et fretting-fatigue des câbles du génie civil (Doctoral dissertation, ECOLE CENTRALE DE LYON).
Google Scholar
[3]
Wang, D., Zhang, D., & Ge, S. (2011). Fretting–fatigue behavior of steel wires in low cycle fatigue. Materials & Design, 32(10), 4986-4993.
DOI: 10.1016/j.matdes.2011.06.037
Google Scholar
[4]
Zhao, D., Liu, S., Xu, Q., Shi, F., Sun, W., & Chai, L. (2017). Fatigue life prediction of wire rope based on stress field intensity method. Engineering Failure Analysis, 81, 1-9.
DOI: 10.1016/j.engfailanal.2017.07.019
Google Scholar
[5]
Wang, D., Zhang, D., & Ge, S. (2014). Effect of terminal mass on fretting and fatigue parameters of a hoisting rope during a lifting cycle in coal mine. Engineering failure analysis, 36, 407-422.
DOI: 10.1016/j.engfailanal.2013.11.006
Google Scholar
[6]
CRUZADO, A., LEEN, S. B., URCHEGUI, M. A., et al. Finite element simulation of fretting wear and fatigue in thin steel wires. International Journal of Fatigue, 2013, vol. 55, pp.7-21.
DOI: 10.1016/j.ijfatigue.2013.04.025
Google Scholar
[7]
Urchegui, M. A., Tato, W., & Gómez, X. (2008). Wear evolution in a stranded rope subjected to cyclic bending. Journal of Materials Engineering and Performance, 17(4), 550-560.
DOI: 10.1007/s11665-007-9165-5
Google Scholar
[8]
Petit, J., & Sarrazin-Baudoux, C. (2015). Fatigue Crack Propagation in Thin Wires of Ultra-High Strength Steel. In Key Engineering Materials (Vol. 627, pp.153-156). Trans Tech Publications.
DOI: 10.4028/www.scientific.net/kem.627.153
Google Scholar
[9]
Beretta, S., & Boniardi, M. (1999). Fatigue strength and surface quality of eutectoid steel wires. International Journal of Fatigue, 21(4), 329-335.
DOI: 10.1016/s0142-1123(98)00082-6
Google Scholar
[10]
Lipski, A., & Mroziński, S. (2012). Approximate determination of a strain-controlled fatigue life curve for aluminum alloy sheets for aircraft structures. International Journal of Fatigue, 39, 2-7.
DOI: 10.1016/j.ijfatigue.2011.08.007
Google Scholar
[11]
Weihsmann, P. R. (1980). Fatigue curves without testing. MATER ENG, 91(3), 52-54.
Google Scholar
[12]
Meggiolaro, M. A., & Castro, J. T. P. (2004). Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue, 26(5), 463-476.
DOI: 10.1016/j.ijfatigue.2003.10.003
Google Scholar
[13]
Dubuc, J., Thang, B. Q., Bazergui, A., & Biron, A. (1971). Unified theory of cumulative damage in metal fatigue(Cumulative damage in metal fatigue, suggesting unified theory applicable to stress or strain controlled conditions). WRC Bulletin, 1-20.
DOI: 10.1115/1.3425328
Google Scholar
[14]
Bathias, C. (Ed.). (2013). Fatigue of materials and structures: application to design. John Wiley & Sons.
Google Scholar
[15]
Gatts, R. R. (1961). Application of a cumulative damage concept to fatigue. Journal of Basic Engineering, 83(4), 529-534.
DOI: 10.1115/1.3662256
Google Scholar
[16]
Amzallag, C. (1982). Low-cycle fatigue and life prediction. ASTM International.
Google Scholar
[17]
Quoc, T. B., Dubuc, J., Bazergui, A., & Biron, A. (1971). Cumulative fatigue damage under stress-controlled conditions. Journal of Basic Engineering, 93(4), 691-698.
DOI: 10.1115/1.3425328
Google Scholar
[18]
Bazergui, A. (2002). Résistance des matériaux. Presses inter Polytechnique.
Google Scholar
[19]
Wahid, A., Mouhib, N., Kartouni, A., Chakir, H., & ELghorba, M. (2019). Energy method for experimental life prediction of central core strand constituting a steel wire rope. Engineering Failure Analysis, 97, 61-71.
DOI: 10.1016/j.engfailanal.2018.12.005
Google Scholar
[20]
Norme ISO 6892 «Matériaux métalliques – Fils – Essai de traction» (1984).
Google Scholar
[21]
Norme Européénne EN 12385-1« Cables en acier .Partie 1:Prescriptions générales»(2002).
Google Scholar
[22]
Tijani, A., Elghorba, M., Chaffoui, H., Mouhib, N., & Boudlal, E. (2016). Experimental life prediction of a 1+ 6 strand extracted from a 19x7 wire rope. IPASJ Int. J. Mech. Eng, 4(3), 23-29.
Google Scholar
[23]
Grosskreutz, J. C. (1971). Fatigue mechanisms in the sub-creep range. In Metal Fatigue Damage: Mechanism, Detection, Avoidance, and Repair. ASTM International.
DOI: 10.1520/stp26684s
Google Scholar
[24]
J. NATTAJ, M.SAFE, F.MAJID, H. CHAFFOUI&M. ELGHORBA.(2016).Characterization and reliability of A36 steel under alternating dynamic and static loading. IPASJ Int. J. Mech.
Google Scholar
[25]
Mouradi, H., El Barkany, A., & El Biyaali, A. (2018). Steel wire ropes failure analysis: Experimental study. Engineering Failure Analysis, 91, 234-242.
DOI: 10.1016/j.engfailanal.2018.04.019
Google Scholar