[1]
Herve Abdi and Lynne J Principal component analysis. Williams John Wiley & Sons, WIREs Comp Stat 2010 2 433–459.
DOI: 10.1002/wics.101
Google Scholar
[2]
A. Kerkour-El Miad, 2011' Modélisation micromécanique du comportement cyclique des polycristaux sous chargement multiaxiaux à déformation et à contrainte imposées avec l'effet de la forme du grain', Thèse de doctorat, Université Pierre et Marie.
DOI: 10.4000/cem.3642
Google Scholar
[3]
Abdul-Latif, A., Radi, M., 2010, 'Modeling of the grain shape effect on the elastic-inelastic behavior of polycrystals with self-consistent scheme',ASME, Engineering Materials and Technology, vol. 132, no. 1, p.011008.
DOI: 10.1115/1.3184036
Google Scholar
[4]
Abdul-Latif, A, kerkourelmiad, A., et Razafindramary,D.2010,'Elasto-Inelastic Cyclic Modeling for Ellipsoidal Inclusion under Multiaxial Loading Paths', IV ECCM, May 16-21, Palais des Congrès, Paris (France), (2010).
Google Scholar
[5]
A.Kerkour-El Miad, F.Jeffali, A. Nougaoui, B. El Kihel" Grain shape effect on the elastic-inelastic behavior of polycrystals under cyclic loading" 1st International Conference on Materials and Environmental Science- ICMES2016 December 1-3, Oujda, Morocco.
DOI: 10.4028/www.scientific.net/kem.820.48
Google Scholar
[6]
A.Kerkour-El Miad,, M. Abbadi, F.Jeffali, A. Nougaoui Effet de la forme de l'inclusion sur le comportement mécanique des matériaux métalliques sous chargements cycliques, cas de chargement TT60,.13ème Congrès de de Mécanique,11-14 avril 2017 avril – Meknès, Maroc.
DOI: 10.1007/bf02473617
Google Scholar
[7]
A.Kerkour-El Miad, F.Jeffali, A.Nougaoui, K.Haboubi 'Effect of the shape of the inclusion and the viscoplastic parameter on the evolution of isotropic and kinematic hardening of metallic materials under cyclic loadings TC''1st International Conference on Civil Engineering and Materials (ICCEM,2017) 11-12 May 2017, Al Hoceima, Morocco.
DOI: 10.4028/www.scientific.net/kem.820.48
Google Scholar
[8]
Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23:187–200.
DOI: 10.1007/bf02289233
Google Scholar
[9]
Kaiser HF. A note on Guttman's lower bound for the number of common factors. Br J Math Stat Psychol 1961, 14:1–2.
Google Scholar
[10]
Jackson JE. A User's Guide to Principal Components. New York: John Wiley & Sons; 1991. 10.
Google Scholar
[11]
Saporta G, Niang N. Principal component analysis: application to statistical process control. In: Govaert G, ed. Data Analysis. London: John Wiley & Sons; 2009, 1–23.
DOI: 10.1002/9780470611777.ch1
Google Scholar
[12]
Abdi H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition(GSVD). In: Salkind NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage Publications; 2007, 907–912.
DOI: 10.4135/9781412952644.n413
Google Scholar
[13]
Principal component analysis Herve Abdi and Lynne J. Williams John Wiley & Sons, WIREs Comp Stat 2010 2 433–459.
DOI: 10.1002/wics.101
Google Scholar