Application of Principal Component Analysis (PCA) for the Choice of Parameters of a Micromechanical Model

Article Preview

Abstract:

The main objective of this work is to apply the Principal Component Analysis (PCA) to the key parameters of a micromechanical model, namely the shape parameter of inclusion (grain) (ratio =a/b) and γ viscoplastic parameter in view of a better simulation. In this work, the sensitivity of the model to parameters and γ is evaluated on the stabilized global stress during cyclic Tension-Compression (TC) loadings and out-of-phase Tension–Torsion, with a sinusoidal waveform and a phase lag of 90 between the two sinusoidal signals TT90 loadings. Indeed several values ​​of and γ are pulled thanks to these loading, we use later the PCA in order to choose the couple (, γ) adequate to launch our simulation. The model used is expressed as part of the self-consistent approach and time-dependent plasticity. Based on the Eshelby tensor, this model considers that the elastic behavior is compressible. For a polycrystalline structure, the grains are deformed by crystallographic sliding located in the most favorably oriented systems and which support a strong constrained stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Herve Abdi and Lynne J Principal component analysis. Williams John Wiley & Sons, WIREs Comp Stat 2010 2 433–459.

DOI: 10.1002/wics.101

Google Scholar

[2] A. Kerkour-El Miad, 2011' Modélisation micromécanique du comportement cyclique des polycristaux sous chargement multiaxiaux à déformation et à contrainte imposées avec l'effet de la forme du grain', Thèse de doctorat, Université Pierre et Marie.

DOI: 10.4000/cem.3642

Google Scholar

[3] Abdul-Latif, A., Radi, M., 2010, 'Modeling of the grain shape effect on the elastic-inelastic behavior of polycrystals with self-consistent scheme',ASME, Engineering Materials and Technology, vol. 132, no. 1, p.011008.

DOI: 10.1115/1.3184036

Google Scholar

[4] Abdul-Latif, A, kerkourelmiad, A., et Razafindramary,D.2010,'Elasto-Inelastic Cyclic Modeling for Ellipsoidal Inclusion under Multiaxial Loading Paths', IV ECCM, May 16-21, Palais des Congrès, Paris (France), (2010).

Google Scholar

[5] A.Kerkour-El Miad, F.Jeffali, A. Nougaoui, B. El Kihel" Grain shape effect on the elastic-inelastic behavior of polycrystals under cyclic loading" 1st International Conference on Materials and Environmental Science- ICMES2016 December 1-3, Oujda, Morocco.

DOI: 10.4028/www.scientific.net/kem.820.48

Google Scholar

[6] A.Kerkour-El Miad,, M. Abbadi, F.Jeffali, A. Nougaoui Effet de la forme de l'inclusion sur le comportement mécanique des matériaux métalliques sous chargements cycliques, cas de chargement TT60,.13ème Congrès de de Mécanique,11-14 avril 2017 avril – Meknès, Maroc.

DOI: 10.1007/bf02473617

Google Scholar

[7] A.Kerkour-El Miad, F.Jeffali, A.Nougaoui, K.Haboubi 'Effect of the shape of the inclusion and the viscoplastic parameter on the evolution of isotropic and kinematic hardening of metallic materials under cyclic loadings TC''1st International Conference on Civil Engineering and Materials (ICCEM,2017) 11-12 May 2017, Al Hoceima, Morocco.

DOI: 10.4028/www.scientific.net/kem.820.48

Google Scholar

[8] Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23:187–200.

DOI: 10.1007/bf02289233

Google Scholar

[9] Kaiser HF. A note on Guttman's lower bound for the number of common factors. Br J Math Stat Psychol 1961, 14:1–2.

Google Scholar

[10] Jackson JE. A User's Guide to Principal Components. New York: John Wiley & Sons; 1991. 10.

Google Scholar

[11] Saporta G, Niang N. Principal component analysis: application to statistical process control. In: Govaert G, ed. Data Analysis. London: John Wiley & Sons; 2009, 1–23.

DOI: 10.1002/9780470611777.ch1

Google Scholar

[12] Abdi H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition(GSVD). In: Salkind NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage Publications; 2007, 907–912.

DOI: 10.4135/9781412952644.n413

Google Scholar

[13] Principal component analysis Herve Abdi and Lynne J. Williams John Wiley & Sons, WIREs Comp Stat 2010 2 433–459.

DOI: 10.1002/wics.101

Google Scholar