Modeling and Numerical Simulation of the Cracking of a Diamond-Coated Cutting Tool during Machining

Article Preview

Abstract:

During the dry machining operation, the cutting tool is constantly subjected to extreme conditions in terms of thermal and mechanical stresses at the tool-chip interface. Indeed, the high temperature and the large plastic deformation affect and particularly accelerate the degradation of the state of the coating of the cutting tool. Thus, it becomes essential to predict the initiation and propagation of a crack in a coated tool. This makes it possible to optimize the cutting and loading conditions in order to improve the efficiency of the coating used and consequently the service life of the cutting tools.In this work, a finite element calculation code "ABAQUS / STANDARD" was used to study and analyze the cracking of a diamond-coated cutting tool. In this sense, we proposed to combine two methods often used to study the discontinuity at the tool-chip and coating-substrate interface. These are respectively the extended finite element method (XFEM) method and the cohesive element method. In addition, a parametric study on the impact of beak radius on cracking was performed to optimize this parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-39

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Klocke, T. Krieg, Coated Tools for Metal Cutting-Features and Applications. CIRP Annals – ManufacturingTechnology. 48(2) (1999) 515–525.

DOI: 10.1016/s0007-8506(07)63231-4

Google Scholar

[2] C. Pagès, Comportement de revêtements céramiques sur outil en tournage à sec de finition. Mécanique.France, EcoleCentrale Lyon. (2003).

Google Scholar

[3] A. A VereschakaaS, N. Grigorieva, N.N. Sitnikovbc, A.D. Batakod, Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life, Wear. 390–391 15 (2017) 209-219.

DOI: 10.1016/j.wear.2017.07.021

Google Scholar

[4] E.J. Oles, A. Inspektor, C.E. Bauer, Diam. Relat. Mater. 5(1996)617.[5] J.M. Sanchez, S. El-Mansy, B. Sun, T. Scherban, N. Fang, D. Pantuso, W. Ford, M.R. Elizalde, J.M. Martinez-Esnaola, A. Martin Meizoso, J. Gil-Sevillano, M. Fuentes, J. Maiz, ActaMater.47(1999)4405. [6] R. Polini, P. D'Antonio, S. Lo Casto, V.F. Ruisi, E. Traversa, Surf. Coat. Technol. 123(2000).

DOI: 10.1016/s1359-6454(99)00254-2

Google Scholar

[7] F. Qin, N.Shen, Y.K. Chou, Implementing a cohesive zone interface in adiamond-coated tool for 2D cutting simulations, imece.(2012)88640.

DOI: 10.1115/imece2012-88640

Google Scholar

[8] F. Qin a, Y.K. Chou a,*, D. Nolen b, R.G. Thompson b, Coating thickness effects on diamond coated cutting tools, Surface & Coatings Technology. 204 (2009) 1056–1060.

DOI: 10.1016/j.surfcoat.2009.06.011

Google Scholar

[9] P. Lu a, X. Xiao b, M. Lukitsch b, A. Sachdev b, Y.K. Chou a,* Interface characterizations of diamond-coated tools by scratch testing and simulations, Surface & Coatings Technology. 206 (2011) 1860–1866.

DOI: 10.1016/j.surfcoat.2011.08.022

Google Scholar

[10] P. Lu a, G. Humberto b,d, X. Xiao c, M. Lukitsch c, D. Durham b, A. Sachdeve c, A. Kumar b, K. Chou a, Coating thickness and interlayer effects on CVD-diamond film adhesion to cobalt-cemented tungsten carbides Surface & Coatings Technology. 215 (2013) 272–279.

DOI: 10.1016/j.surfcoat.2012.08.093

Google Scholar

[11] P. Lu a, X. Xiao b, Y.K. Chou a Interface delamination study of diamond-coated carbide tools considering coating fractures Surface & Coatings Technology. 260 (2014) 239–245.

DOI: 10.1016/j.surfcoat.2014.08.080

Google Scholar

[12] D. S. Dugdale, J. Mech. Phys. Solids. 8 (1960) 100–104.

Google Scholar

[13] G. I. Barenblatt, Advan. Appl. Mech. 7 (1962) 55–125.

Google Scholar

[14] A.C. Palmer, J.R. Rice, The growth of slip surfaces in the progressivefailure of overconsolidated clay. Proceedings of the Royal Society, London. (1973) A332, 527-548.

Google Scholar

[15] A. Hillerborg, M. Modéer, P. E Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research. 6 (1976) 773-782.

DOI: 10.1016/0008-8846(76)90007-7

Google Scholar

[16] G.T. Camacho, M. Ortiz, Computatio nalmodelling of impact damage in brittle materials. Solids 5 Structures. 33(1996) 20–22.

Google Scholar

[17] R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Computitational modelling of the residual strength of repaired composite laminates using a cohesive damage model. 22(2008)1565-1591.

DOI: 10.1163/156856108x309576

Google Scholar

[18] L. Cangémi, M. Cocu, M. Raous, g g Adhesion and friction model for the fibre/matrix interface of a composite h h, Third biennal Joint Comference on engineering system design and analysis, Montpellier. 1-4 (1996) 157-163.

Google Scholar

[19] M. Raous, L. Cangémi, M. Cocu, g g Un modèle couplant adhérence et frottement pour le contact unilatéral entre deux solides déformables h h , C. R. Acad. Sci. Paris. 329 (1997) 503-509.[20] M. Raous, L. Cangémi, M. Cocu, g g Consistent model coupling adhesion, friction and unilateral contact h h, Computer Meth. Appl. Mech. and Engrg. 177(1999)383-399.

DOI: 10.1016/s1251-8069(97)89074-4

Google Scholar

[21] A. Needleman. An analysis of tensile decohesion along an interface. Mech. Phys. Solids. 38(1989)289–324.

Google Scholar

[22] V. Tvergaard. Eect of fibre debonding in a whisker-reinforced metal. Material Science and Engineering Part. 125 (1990)203–213.

DOI: 10.1016/0921-5093(90)90170-8

Google Scholar

[23] P. H. Geubelle and J. S. Baylor. Impact-induced delamination of composites: a 2d simulation. Composites Part B, 29B :589–602, (1998).

DOI: 10.1016/s1359-8368(98)00013-4

Google Scholar

[24] N Moës, J Dolbow, T Belytschko. A finite element method for crack growth with out remeshing. International Journal of Numerical Methods in Engineering. 46 (1999) 131-50.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[25] T Belytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal of Numerical Methods in Engineering 1999; 45:601-20.[26] T.P Fries, T Belytschko. The extended/generalized finite element method: An over view of the method and its applications. International Journal for Numerical Methods in Engineering 2010; 84: 253-304.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[27] T Belytschko, R Gracie, G Ventura. A review of extended/ generalized finite element methods for material modeling. Model Simul Mater Sc 2009; 17(4): 043001. [28]P Lu, K Chou. Interface delamination of diamond-coated carbide tools considering coating fractures by XFEM. (2013).

DOI: 10.1115/msec2013-1132

Google Scholar

[29] P. Lu, An investigation into interface behavior and delamination wear for diamond-coated cutting tools, Doctoral thesis, Tuscaloosa, Alabama. (2013).

Google Scholar