[1]
McDowell. D. L. and Olson G B (2008). Concurrent design of hierarchical materials and structures Springer 10.1007/s10820-008-9100-6.
Google Scholar
[2]
Understanding Nonlinear Analysis-Solidworks.
Google Scholar
[3]
Ponte Castañeda, P., 1991. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39 (1), 45±71.
Google Scholar
[4]
Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13,89.72,734.
Google Scholar
[5]
Hutchinson JW. Elastic–plastic behaviour of polycrystalline metals and composites. Proc Roy Soc Lond A 1970; 319:247–72.
Google Scholar
[6]
R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids 48 (2000) 1203-1227.
DOI: 10.1016/s0022-5096(99)00071-x
Google Scholar
[7]
Suquet, P., 1995. Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda's nonlinear variational procedure. C.R. Acad. Sci. Paris Sér. IIb 320.
Google Scholar
[8]
Doghri, I., Brassart, L., Adam, L., & Gérard, J. S. (2011). A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. International Journal of Plasticity, 27(3), 352-371.
DOI: 10.1016/j.ijplas.2010.06.004
Google Scholar
[9]
P. Ponte Castañeda, Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys.Solids 44 (1996) 827–862.
DOI: 10.1016/0022-5096(96)00015-4
Google Scholar
[10]
Voigt W(1888). Uber die beziehung zwischen den beiden elastizi-tatskonstanten isotroper Krorper, Wied Ann. 38: 573-587.
DOI: 10.1002/andp.18892741206
Google Scholar
[11]
Reuss (1929). A. Calculation of flow limit of mixed crystals. Z Angew Math Mech; 9: 49-58.
Google Scholar
[12]
Hashin Z, Shtrikman S (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids; 11: 127-140.
DOI: 10.1016/0022-5096(63)90060-7
Google Scholar
[13]
Walpole L (1966). On bounds for the overall elastic moduli of hetero-geneous systems--I. J Mech Phys Solids; 14: 151-162.
Google Scholar
[14]
Willis, J. (1977): Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys.Solids 25, 185–202.
DOI: 10.1016/0022-5096(77)90022-9
Google Scholar
[15]
Eshelby. J.D (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc.Roy.Soc.London, A241:376–396.
Google Scholar
[16]
Hershey A. The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech-Trans ASME 1954;21(3):236–40.
DOI: 10.1115/1.4010899
Google Scholar
[17]
Kröner, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Physik A Hadrons and Nuclei, 151(4), 504 518.
DOI: 10.1007/bf01337948
Google Scholar
[18]
Kröner, E. (1977). Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids, 25(2), 137-155.
DOI: 10.1016/0022-5096(77)90009-6
Google Scholar
[19]
Kröner, E. (1977). Effective moduli of random elastic media-unified calculation of bounds and self-consistent values. Mechanics Research Communications, 4(6), 389-393.
DOI: 10.1016/0093-6413(77)90061-1
Google Scholar
[20]
Fassi-Fehri, O., Hihi, A., & Berveiller, M. (1989). Multiple site self consistent scheme. International journal of engineering science, 27(5), 495-502.
DOI: 10.1016/0020-7225(89)90002-5
Google Scholar
[21]
Dong XN, Zhang HX and Guo XE. Interfacial strength of cement lines in human cortical bone. Mech Chem Biosys 2005; 2: 63–68.
Google Scholar
[22]
Broohm A. Homogeneisation du comporte elastique des composites avec la prise en compte de l'endommagement. Ph.D. thesis, Université de Metz; (2003).
Google Scholar
[23]
Wang GF, Long JM and Feng XQ. A self-consistent model for the elastic contact of rough surfaces. Acta Mech 2015; 226: 285–293.
DOI: 10.1007/s00707-014-1177-2
Google Scholar
[24]
Zheng QS and Du DX. An explicit and universally applicable estimate for the effective properties of multiphasecomposites which accounts for inclusion distribution.J Mech Phys Solids 2001; 49: 2765–2788.
DOI: 10.1016/s0022-5096(01)00078-3
Google Scholar
[25]
Mori T, Tanaka K. Ave rage stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973;21(5):571–4.
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[26]
Fakri N, Azrar L, Bakkali LE. El ectroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int J Solids Struct 2003;40(2):361–84.
DOI: 10.1016/s0020-7683(02)00524-3
Google Scholar
[27]
Hori M and Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites. Mech Mater 1993; 14: 189–206.
DOI: 10.1016/0167-6636(93)90066-z
Google Scholar
[28]
Hori, M., & Nemat-Nasser, S. (1999). On two micromechanics theories for determining micro–macro relations in heterogeneous solids. Mechanics of Materials, 31(10), 667-682.
DOI: 10.1016/s0167-6636(99)00020-4
Google Scholar
[29]
Aboutajeddine, A., & Neale, K. W. (2005). The double-inclusion model: a new formulation and new estimates. Mechanics of materials, 37(2), 331-341.
DOI: 10.1016/j.mechmat.2003.08.016
Google Scholar
[30]
Mcdowell D L and Story T L (1998) New Directions In Materials Design Science And Engineering.
Google Scholar
[31]
Certification Specifications for Large Aeroplanes (CS-25), Book 2, AMC No.1 to CS 25.603, Subpart D.
Google Scholar
[32]
Ouaar, A. (2006). Micromechanics of rate-independent multi-phase composites. Application to Steel Fiber-Reinforced Concrete (Doctoral dissertation, Ph. D. thesis, Catholique de Louvain Facultédes Sciences Appliquées).
Google Scholar
[33]
Gilormini, P., 1995. Insuffisance de l'extension classique du modèle auto-cohérent au comportement non linéaire. C. R. Acad. Sci. Paris 320 (Série IIb), 115–122.
Google Scholar
[34]
Berveiller, M., Zaoui, A., 1978. An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26, 325–344.
DOI: 10.1016/0022-5096(78)90003-0
Google Scholar
[35]
Chaboche, J.L., Kanouté, P., Roos, A., 2005. On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J.Plasticity 21.
DOI: 10.1016/j.ijplas.2004.07.001
Google Scholar
[36]
Jiang, T., & Shao, J. F. (2009). On the incremental approach for nonlinear homogenization of composite and influence of isotropization. Computational Materials Science, 46(2), 447-451.
DOI: 10.1016/j.commatsci.2009.03.032
Google Scholar
[37]
Peng, X., Tang, S., Hu, N. and Han, J., 2016. Determination of the Eshelby tensor in mean-field schemes for evaluation of mechanical properties of elastoplastic composites. International Journal of Plasticity 76, 147-165.
DOI: 10.1016/j.ijplas.2015.07.009
Google Scholar
[38]
Gilormini, P. 1996. A critical evaluation of various nonlinear extensions of the self-consistent model. In:.
Google Scholar
[39]
Molinari, A., Canova, G.R., Ahzi, S., 1987. A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35 (12), 2983–2994.
DOI: 10.1016/0001-6160(87)90297-5
Google Scholar
[40]
Pierard, O., Doghri, I., 2006. An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int. J.
DOI: 10.1016/j.ijplas.2005.04.001
Google Scholar
[41]
Wu, L., Noels, L., Adam, L., Doghri, I., 2013. A combined incremental secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. International Journal of Plasticity 51, 80– 102.
DOI: 10.1016/j.ijplas.2013.06.006
Google Scholar
[42]
Wu, L., Doghri, I., Noels, L., 2015. An incremental-secant mean-field homogenization method with second statistical moments for elasto-plastic composite materials. Philosophical Magazine 95 (28-30), 3348–3384.
DOI: 10.1080/14786435.2015.1087653
Google Scholar
[43]
L.Wu, L. Noels, L. Adam and I. Doghri, Int. J. Solids Struct. 50 (2013) p.3843.
Google Scholar
[44]
Pierard O., C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Composites Science and Technology, 64/10-11 (2004), pp.1587-1603.
DOI: 10.1016/j.compscitech.2003.11.009
Google Scholar
[45]
Digimat, 2018. Documentation of Software Platform for Nonlinear Multi-scale Modeling of Composite Materials and Structures. e-Xstream Engineering, Belgium and Luxembourg.
Google Scholar
[46]
Lielens, G. Micro–macro modeling of structured materials. PhD Thesis, Université Catholique de Louvain, Belgium, (1999).
Google Scholar
[47]
Azoti, W.L., Koutsawa, Y., Tchalla, A., Makradi, S., and Belouettar, S., 2016. Micromechanics-based multi-site modeling of elastoplastic behavior of composite materials. Int. J. Solids Structs. 59, 198-207.
DOI: 10.1016/j.ijsolstr.2015.02.002
Google Scholar
[48]
Ortolano JM, Hernández JA, Oliver J (2013) A Comparative Study on Homogenization Strategies for Multi-Scale Analysis of Materials. 135, Monograph CIMNE.
Google Scholar