Capabilities of Mean-Field Approaches for the Description of the Elasto-Plastic Behavior of Composite Materials

Article Preview

Abstract:

Composite materials offer potential avenues for tailoring materials with desired properties intended to innovative applications. To speed up this scheme, trial and error practice is evolving to a more rational and organized material design process. This trend depends on our ability to bridge the micro-scale to the system level. An important brick of this process is constituted of micromechanical models that bridge the gap between micro and macro scales in materials. Unfortunately, to forecast the behavior of complex composite materials microstructures, these models remain rudimentary, particularly for the nonlinear regime. Accordingly, our ambition is to highlight the limitations of existing micromechanical models and examine their respective capabilities to predict elastoplastic behavior of composite materials. The assessment reveals that in order to reduce the disparity between micromechanical models predictions and corresponding numerical or experimental results, new robust and efficient micromechanical models are needed. These models have to accurately describe different interactions in the composite and deal with multiphase and two-phase composites with high volume fractions under different loading paths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] McDowell. D. L. and Olson G B (2008). Concurrent design of hierarchical materials and structures Springer 10.1007/s10820-008-9100-6.

Google Scholar

[2] Understanding Nonlinear Analysis-Solidworks.

Google Scholar

[3] Ponte Castañeda, P., 1991. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39 (1), 45±71.

Google Scholar

[4] Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13,89.72,734.

Google Scholar

[5] Hutchinson JW. Elastic–plastic behaviour of polycrystalline metals and composites. Proc Roy Soc Lond A 1970; 319:247–72.

Google Scholar

[6] R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids 48 (2000) 1203-1227.

DOI: 10.1016/s0022-5096(99)00071-x

Google Scholar

[7] Suquet, P., 1995. Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda's nonlinear variational procedure. C.R. Acad. Sci. Paris Sér. IIb 320.

Google Scholar

[8] Doghri, I., Brassart, L., Adam, L., & Gérard, J. S. (2011). A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. International Journal of Plasticity, 27(3), 352-371.

DOI: 10.1016/j.ijplas.2010.06.004

Google Scholar

[9] P. Ponte Castañeda, Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys.Solids 44 (1996) 827–862.

DOI: 10.1016/0022-5096(96)00015-4

Google Scholar

[10] Voigt W(1888). Uber die beziehung zwischen den beiden elastizi-tatskonstanten isotroper Krorper, Wied Ann. 38: 573-587.

DOI: 10.1002/andp.18892741206

Google Scholar

[11] Reuss (1929). A. Calculation of flow limit of mixed crystals. Z Angew Math Mech; 9: 49-58.

Google Scholar

[12] Hashin Z, Shtrikman S (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids; 11: 127-140.

DOI: 10.1016/0022-5096(63)90060-7

Google Scholar

[13] Walpole L (1966). On bounds for the overall elastic moduli of hetero-geneous systems--I. J Mech Phys Solids; 14: 151-162.

Google Scholar

[14] Willis, J. (1977): Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys.Solids 25, 185–202.

DOI: 10.1016/0022-5096(77)90022-9

Google Scholar

[15] Eshelby. J.D (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc.Roy.Soc.London, A241:376–396.

Google Scholar

[16] Hershey A. The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech-Trans ASME 1954;21(3):236–40.

DOI: 10.1115/1.4010899

Google Scholar

[17] Kröner, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Physik A Hadrons and Nuclei, 151(4), 504 518.

DOI: 10.1007/bf01337948

Google Scholar

[18] Kröner, E. (1977). Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids, 25(2), 137-155.

DOI: 10.1016/0022-5096(77)90009-6

Google Scholar

[19] Kröner, E. (1977). Effective moduli of random elastic media-unified calculation of bounds and self-consistent values. Mechanics Research Communications, 4(6), 389-393.

DOI: 10.1016/0093-6413(77)90061-1

Google Scholar

[20] Fassi-Fehri, O., Hihi, A., & Berveiller, M. (1989). Multiple site self consistent scheme. International journal of engineering science, 27(5), 495-502.

DOI: 10.1016/0020-7225(89)90002-5

Google Scholar

[21] Dong XN, Zhang HX and Guo XE. Interfacial strength of cement lines in human cortical bone. Mech Chem Biosys 2005; 2: 63–68.

Google Scholar

[22] Broohm A. Homogeneisation du comporte elastique des composites avec la prise en compte de l'endommagement. Ph.D. thesis, Université de Metz; (2003).

Google Scholar

[23] Wang GF, Long JM and Feng XQ. A self-consistent model for the elastic contact of rough surfaces. Acta Mech 2015; 226: 285–293.

DOI: 10.1007/s00707-014-1177-2

Google Scholar

[24] Zheng QS and Du DX. An explicit and universally applicable estimate for the effective properties of multiphasecomposites which accounts for inclusion distribution.J Mech Phys Solids 2001; 49: 2765–2788.

DOI: 10.1016/s0022-5096(01)00078-3

Google Scholar

[25] Mori T, Tanaka K. Ave rage stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973;21(5):571–4.

DOI: 10.1016/0001-6160(73)90064-3

Google Scholar

[26] Fakri N, Azrar L, Bakkali LE. El ectroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int J Solids Struct 2003;40(2):361–84.

DOI: 10.1016/s0020-7683(02)00524-3

Google Scholar

[27] Hori M and Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites. Mech Mater 1993; 14: 189–206.

DOI: 10.1016/0167-6636(93)90066-z

Google Scholar

[28] Hori, M., & Nemat-Nasser, S. (1999). On two micromechanics theories for determining micro–macro relations in heterogeneous solids. Mechanics of Materials, 31(10), 667-682.

DOI: 10.1016/s0167-6636(99)00020-4

Google Scholar

[29] Aboutajeddine, A., & Neale, K. W. (2005). The double-inclusion model: a new formulation and new estimates. Mechanics of materials, 37(2), 331-341.

DOI: 10.1016/j.mechmat.2003.08.016

Google Scholar

[30] Mcdowell D L and Story T L (1998) New Directions In Materials Design Science And Engineering.

Google Scholar

[31] Certification Specifications for Large Aeroplanes (CS-25), Book 2, AMC No.1 to CS 25.603, Subpart D.

Google Scholar

[32] Ouaar, A. (2006). Micromechanics of rate-independent multi-phase composites. Application to Steel Fiber-Reinforced Concrete (Doctoral dissertation, Ph. D. thesis, Catholique de Louvain Facultédes Sciences Appliquées).

Google Scholar

[33] Gilormini, P., 1995. Insuffisance de l'extension classique du modèle auto-cohérent au comportement non linéaire. C. R. Acad. Sci. Paris 320 (Série IIb), 115–122.

Google Scholar

[34] Berveiller, M., Zaoui, A., 1978. An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26, 325–344.

DOI: 10.1016/0022-5096(78)90003-0

Google Scholar

[35] Chaboche, J.L., Kanouté, P., Roos, A., 2005. On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J.Plasticity 21.

DOI: 10.1016/j.ijplas.2004.07.001

Google Scholar

[36] Jiang, T., & Shao, J. F. (2009). On the incremental approach for nonlinear homogenization of composite and influence of isotropization. Computational Materials Science, 46(2), 447-451.

DOI: 10.1016/j.commatsci.2009.03.032

Google Scholar

[37] Peng, X., Tang, S., Hu, N. and Han, J., 2016. Determination of the Eshelby tensor in mean-field schemes for evaluation of mechanical properties of elastoplastic composites. International Journal of Plasticity 76, 147-165.

DOI: 10.1016/j.ijplas.2015.07.009

Google Scholar

[38] Gilormini, P. 1996. A critical evaluation of various nonlinear extensions of the self-consistent model. In:.

Google Scholar

[39] Molinari, A., Canova, G.R., Ahzi, S., 1987. A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35 (12), 2983–2994.

DOI: 10.1016/0001-6160(87)90297-5

Google Scholar

[40] Pierard, O., Doghri, I., 2006. An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int. J.

DOI: 10.1016/j.ijplas.2005.04.001

Google Scholar

[41] Wu, L., Noels, L., Adam, L., Doghri, I., 2013. A combined incremental secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. International Journal of Plasticity 51, 80– 102.

DOI: 10.1016/j.ijplas.2013.06.006

Google Scholar

[42] Wu, L., Doghri, I., Noels, L., 2015. An incremental-secant mean-field homogenization method with second statistical moments for elasto-plastic composite materials. Philosophical Magazine 95 (28-30), 3348–3384.

DOI: 10.1080/14786435.2015.1087653

Google Scholar

[43] L.Wu, L. Noels, L. Adam and I. Doghri, Int. J. Solids Struct. 50 (2013) p.3843.

Google Scholar

[44] Pierard O., C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Composites Science and Technology, 64/10-11 (2004), pp.1587-1603.

DOI: 10.1016/j.compscitech.2003.11.009

Google Scholar

[45] Digimat, 2018. Documentation of Software Platform for Nonlinear Multi-scale Modeling of Composite Materials and Structures. e-Xstream Engineering, Belgium and Luxembourg.

Google Scholar

[46] Lielens, G. Micro–macro modeling of structured materials. PhD Thesis, Université Catholique de Louvain, Belgium, (1999).

Google Scholar

[47] Azoti, W.L., Koutsawa, Y., Tchalla, A., Makradi, S., and Belouettar, S., 2016. Micromechanics-based multi-site modeling of elastoplastic behavior of composite materials. Int. J. Solids Structs. 59, 198-207.

DOI: 10.1016/j.ijsolstr.2015.02.002

Google Scholar

[48] Ortolano JM, Hernández JA, Oliver J (2013) A Comparative Study on Homogenization Strategies for Multi-Scale Analysis of Materials. 135, Monograph CIMNE.

Google Scholar