Effect of Gold Nano Dots in Microwave Brazing: A Novel Approach to Join Ti6Al4V to MACOR®

Article Preview

Abstract:

Nano structured surface generation is useful in inducing specific functionalities to the surface. This work attempts on generation of such surface through thermal dewetting. Enhanced adhesion behavior of such surface is utilized for joining MACOR® ceramic to Ti6Al4V alloy. Ti6Al4V alloy is brazed with MACOR® by microwave energy using TiCuSil as a braze alloy. MACOR® ceramic is subjected to pre-treatment called gold dewetting. For comparison plain ceramic is also used for joining. The reaction zone formed on joining Ti6Al4V to gold dewetted MACOR® is more uniform than the untreated MACOR® ceramic interface. Energy Dispersive Spectroscopy (EDS) analysis of the reaction zone suggests the formation of Ti2Cu and Ti3Au intermetallic compounds. The shear strength of the pre-treated samples is observed to be higher than that of plain joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-228

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Donald M., P. Tengvall, M. Textor, T. Peter, Titanium in Medicine, Springer-Verlag Berlin Heidelberg, (2001).

Google Scholar

[2] A.T. Sidambe, Biocompatibility of advanced manufactured titanium implants-A review, Materials. 7 (2014) 8168–8188.

DOI: 10.3390/ma7128168

Google Scholar

[3] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering A. 213 (1996) 103–114.

Google Scholar

[4] D.A.X. Chu, S.L. Yang, Y. Jun, Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing, Acta Metallurgica Sinica (English Letters). 3 (2018) 1287–1296.

DOI: 10.1007/s40195-018-0735-3

Google Scholar

[5] D.F. Gibbons, Biocompatibility of Macor glass ceramic, Journal of Biomedical Materials Research. 14 (1980) 177–180.

DOI: 10.1002/jbm.820140209

Google Scholar

[6] Trevor, Application of Macor in the Aerospace Sector, Multi-Lab. (2016) 2. http://www.multi-lab.co.uk/blog/applications-macor-aerospace-sector-2/ (accessed February 13, 2018).

Google Scholar

[7] A. Tomsia, A.T. Ceramic, D.P. Iv, Ceramic / metal joining for structures and materials, Journal De Physique IV. 03 (1993) 1317–1326.

DOI: 10.1051/jp4:19937203

Google Scholar

[8] Y.J. Zhu, W.F. Ding, Z.Y. Zhao, Y.C. Fu, H.H. Su, Compressive strength and interface microstructure of PCBN grains brazed with high-frequency induction heating method, Acta Metallurgica Sinica (English Letters). 30 (2017) 641–649.

DOI: 10.1007/s40195-017-0570-y

Google Scholar

[9] L.A. Rocha, M.A. Barbosa, R. Puers, Active metal brazing for joining glass-ceramic to titanium-a study on silver enrichment, Journal of Materials Science: Materials in Medicine. 6 (1995) 835–838.

DOI: 10.1007/bf00134327

Google Scholar

[10] A. Guedes, A. Pinto, M. Vieira, F. Viana, Effect of brazing temperature on the titanium/glass-ceramic bonding, Journal of Materials Processing Technology. 92-93 (1999) 102–106.

DOI: 10.1016/s0924-0136(99)00240-x

Google Scholar

[11] A. Guedes, A. Pinto, M. Vieira, Multilayered interface in Ti / Macor ® machinable glass-ceramic joints, Materials Science and Engineering A. 301 (2001) 118–124.

DOI: 10.1016/s0921-5093(00)01804-9

Google Scholar

[12] E. Ariza, L.A. Rocha, Evaluation of corrosion resistance of multi-layered Ti/glass-ceramic interfaces by electrochemical impedance spectroscopy, Materials Science Forum. 492-493 (2005) 189–194.

DOI: 10.4028/www.scientific.net/msf.492-493.189

Google Scholar

[13] L.A. Rocha, T.O. Ferreira, A.C. Monteiro, Corrosion Behaviour of Metal/Ceramic Interfaces in Physiological Solutions, Key Engineering Materials. 230-232 (2005) 1–4.

DOI: 10.4028/www.scientific.net/kem.230-232.479

Google Scholar

[14] H.B. Liu, L.X. Zhang, L.Z. Wu, D. Liu, J.C. Feng, Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil, Materials Science and Engineering A. 498 (2008) 321–326.

DOI: 10.1016/j.msea.2008.08.008

Google Scholar

[15] H.B. Liu, L.X. Zhang, D. Liu, P. He, J.C. Feng, Interface microstructure analysis of SiO2 glass ceramic and Ti-6Al-4V alloy joint brazed with Ti-Zr-Ni-Cu alloy, Materials Science and Technology. 26 (2010) 188–192.

DOI: 10.1179/174328409x428891

Google Scholar

[16] D. Lewis, R. Bruce, M. Imam, A. Fliflet, Joining of materials with millimetre-wave beam source, Science and Technology of Welding & Joining. 9 (2004) 459–464.

DOI: 10.1179/136217104225021706

Google Scholar

[17] C. van der Eijk, Z.K. Sallom, O.M. Akselsen, Microwave brazing of NiTi shape memory alloy with Ag–Ti and Ag–Cu–Ti alloys, Scripta Materialia. 58 (2008) 779–781.

DOI: 10.1016/j.scriptamat.2007.12.017

Google Scholar

[18] S. Tamang, S. Aravindan, An investigation on joining of Al6061-T6 to AZ31B by microwave hybrid heating using active braze alloy as an interlayer, Journal of Manufacturing Processes. 28 (2017) 94–100.

DOI: 10.1016/j.jmapro.2017.05.027

Google Scholar

[19] C. V. Thompson, Solid-State Dewetting of Thin Films, Annual Review of Materials Research. 42 (2012) 399–434.

DOI: 10.1146/annurev-matsci-070511-155048

Google Scholar

[20] A. Goswami, S. Aravindan, P. V. Rao, Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra, Superlattices and Microstructures. 91 (2016) 252–258.

DOI: 10.1016/j.spmi.2016.01.016

Google Scholar

[21] J.-Y. Kwon, T.-S. Yoon, K.-B. Kim, S.-H. Min, Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide, Journal of Applied Physics. 93 (2003) 3270–3278.

DOI: 10.1063/1.1556178

Google Scholar

[22] N. Wakabayashi, M. Ai, K. Iijima, Y. Takada, O. Okuno, Infrared Gold Allov Brazing on Titanium and Ti-GA1-4V Alloy Surfaces and its Application to Removable Prosthodontics, Journal of Prosthodontics. 8 (1999) 180–187.

DOI: 10.1111/j.1532-849x.1999.tb00033.x

Google Scholar

[23] X. Sun, G. Wu, J. Yu, C. Du, Efficient microwave welding of polypropylene using graphite coating as primers, Materials Letters. 220 (2018) 245–248.

DOI: 10.1016/j.matlet.2018.03.046

Google Scholar

[24] A. Kosinova, L. Klinger, O. Kovalenko, E. Rabkin, The role of grain boundary sliding in solid-state dewetting of thin polycrystalline films, Scripta Materialia. 82 (2014) 33–36.

DOI: 10.1016/j.scriptamat.2014.03.015

Google Scholar

[25] N. Yoshikawa, E. Ishizuka, S. Taniguchi, Heating of Metal Particles in a Single-Mode Microwave Applicator, Materials Transactions. 47 (2006) 898–902.

DOI: 10.2320/matertrans.47.898

Google Scholar

[26] R.M. Anklekar, K. Bauer, D.K. Agrawal, R. Roy, Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts, Powder Metallurgy. 48 (2005) 39–46.

DOI: 10.1179/003258905x37657

Google Scholar

[27] V.K. Varadan, V. V Varadan, Microwave Joining and Repair of Composite Materials, Polymer Engineering and SciencePloymer. 31 (1991) 470–486.

DOI: 10.1002/pen.760310703

Google Scholar

[28] D. Demirskyi, D. Agrawal, A. Ragulya, Neck growth kinetics during microwave sintering of nickel powder, Journal of Alloys and Compounds. 509 (2011) 1790–1795.

DOI: 10.1016/j.jallcom.2010.10.042

Google Scholar

[29] M. Kikuchi, M. Takahashi, O. Okuno, Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys, Dental Materials. 22 (2006) 641–646.

DOI: 10.1016/j.dental.2005.05.015

Google Scholar

[30] H. Baker, Alloy Phase Diagrams, (1998).

Google Scholar