Thermal Stability of Nanocrystalline Soft Magnetic Alloys with Different Inhibitors

Article Preview

Abstract:

In this work, the effect of different inhibitors on the thermal stability of the magnetic properties in Fe73.5Cu1M3Si13.5B9 nanocrystalline alloys, where M = Nb, W, Mo, was investigated. Nanocrystalline alloy with tungsten has the greatest thermal stability. The change in the magnetic properties in the ageing process was associated with vacancies and vacancy clusters, the formation of which is facilitated by large atoms of inhibitory elements occupying free positions in the substitution solid solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044–6046.

DOI: 10.1063/1.342149

Google Scholar

[2] K. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai, The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material, Acta Metall. Mater. 40 (1992) 2137–2147.

DOI: 10.1016/0956-7151(92)90131-w

Google Scholar

[3] Y. Yoshizawa, K. Yamauchi, Magnetic properties of Fe-Cu-M-S-B (M = Cr, V, Nb, Ta, W) alloys, Mater. Sci. Eng. 133A (1991) 176–179.

DOI: 10.1016/b978-0-444-89107-5.50045-9

Google Scholar

[4] K. Yamauchi, Y. Yoshizawa, Recent development of nanocrystalline soft magnetic alloys, NanoStructured Mater. 6 (1995) 247–254.

DOI: 10.1016/0965-9773(95)00048-8

Google Scholar

[5] M. Müller, N. Mattern, U. Kühn, Correlation between magnetic and structural properties of nanocrystalline soft magnetic alloys, J. Magn. Magn. Mater. 157–158 (1996) 209–210.

DOI: 10.1016/0304-8853(95)01082-3

Google Scholar

[6] G. Herzer, Amorphous and nanocrystalline soft magnets, in: Magnetic hysteresis in novel magnetic materials, Ed. G.C. Hadjipanayis, Kluver Academic Publishers, 1997, p.711–730.

DOI: 10.1007/978-94-011-5478-9_77

Google Scholar

[7] H. H. Liebermann, Aging kinetics of magnetic losses in annealed Fe78B13Si9 amorphous metallic alloy, J. Appl. Phys. 61 (1987) 319–324.

Google Scholar

[8] Y. Ohta, H. Kakehashi, M. Fukuhara, H. Fukunaga, Long-time aging effect on coercive force in amorphous magnetic cores and estimation of it deterioration at operating temperature, Jap. J. Appl. Phys. 30 (1991) 2765–2769.

DOI: 10.1143/jjap.30.2765

Google Scholar

[9] S. Bhattacharya, E.A. Lass, S.J. Poon, G.J. Shiflet, M. Rawlings, M. Daniil, M.A. Willard, Magnetic properties and thermal stability of (Fe,Co)-Mo-B-P-Si metallic glasses, J. Appl. Phys. 111 (2012) 063906.

DOI: 10.1063/1.3692389

Google Scholar

[10] Yu.N. Starodubtsev, V.Ya. Belozerov, Magnetic properties of amorphous and nanocrystalline alloys, Yekaterinburg, 2002 (in Russian).

Google Scholar

[11] A. Lekdim, L. Morel, M.-A. Raulet, Magnetic properties evolution of a high permeability nanocrystalline FeCuNbSiB during thermal ageing, Eur. Phys. J. Phys. 79 (2017) 20601.

DOI: 10.1051/epjap/2017160449

Google Scholar

[12] A. Lekdim, L. Morel, M.-A. Raulet, Effect of the remaining magnetization on the thermal ageing of high permeability nanocrystalline FeCuNbSiB alloys, J. Magn. Magn. Mater. 460 (2018) 253–262.

DOI: 10.1016/j.jmmm.2018.03.051

Google Scholar

[13] B.N. Filippov, V.V. Shulika, A.P. Potapov, N.F. Viľdanova, Magnetic properties and temperature stability of a molybdenum-doped Finemet-type alloy, Techn. Phys. 59 (2014) 373–377.

DOI: 10.1134/s1063784214030098

Google Scholar

[14] O. Kubaschewski, Iron–binary phase diagrams, Springer–Verlag, Berlin, (1982).

Google Scholar

[15] Phase diagrams of binary metallic systems, Vol. 2, Ed. N.P. Lyakishev, Moscow, 1997 (In Russian).

Google Scholar

[16] N.N. Greenwood, A. Earnshaw, Chemistry of the elements, Butterworth–Heinemann, Oxford, (1998).

Google Scholar

[17] W. Hume-Rothery, G.V. Raynor, The structure of metals and alloys, The institute of metals, London, (1962).

Google Scholar

[18] G. Gottstein, L.S. Shvindlerman, Grain boundary migration in metals: thermodynamics, kinetics, applications, CRC Press, Boca Raton, London, New York, (2010).

DOI: 10.1201/9781420054361

Google Scholar

[19] K. Hono, D.H. Ping, M. Onhuma, H. Ondera, Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy, Acta Mater. 47 (1999) 997–1006.

DOI: 10.1016/s1359-6454(98)00392-9

Google Scholar

[20] M.M. Gong, F. Liu, K. Zhang, Thermodynamic stability of binary nanocrystalline alloys: analysis of solute and excess vacancy, Appl. Phys. A 105 (2011) 927–934.

DOI: 10.1007/s00339-011-6501-2

Google Scholar

[21] V.S. Tsepelev, Yu.N. Starodubtsev, V.Ya. Belozerov, The effect of inhibitors on the structure and magnetic properties of nanocrystalline soft magnetic alloys, Phys. Met. Metallogr. 119 (2018) 831–836.

DOI: 10.1134/s0031918x18090120

Google Scholar

[22] G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, D. Terentyev, On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy, J. Phys.: Condens. Matter. 25 (2013) 315401.

DOI: 10.1088/0953-8984/25/31/315401

Google Scholar

[23] A. Kedous-Lebouc, P. Brissonneau, Accelerated aging behaviour under a compressive stress of Metglass 2605S2 amorphous ribbons, Phys. Scripta 39 (1989) 112–114.

DOI: 10.1088/0031-8949/39/1/018

Google Scholar

[24] V.A. Kataev, Yu.N. Starodubtsev, F.V. Mineev, Concerning the magnetic losses in annealed ribbons of amorphous alloy Fe81B13Si4C2// Phys. Met. Metallogr. 70 (1990) 199–202.

Google Scholar