Improving the Properties of Aluminum Alloy System Al-Cu-Mg, Subjected to Hardening and Severe Plastic Deformation

Article Preview

Abstract:

The tendency of the aluminum alloy D16 system Al-Cu-Mg to natural (NA) and artificial aging (AA) after hardening and high pressure torsion (HPT) under a pressure of 6 GPa at room temperature was studied using optical metallography, scanning electron microscopy, electrical conductivity tests. The dependences of microhardness and electrical conductivity were constructed depending on the exposure time. It is shown that heat treatment (HT) (hardening + HPT + NA) leads to an increase of hardening of the alloy D16 compared to standard HT (T4) in 2,3 times, at preservation of level of conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-108

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bulk nanostructured materials with multifunctional properties / I. Sabirov, N.A. Enikeev, M.Yu. Murashkin, R.Z. Valiev. - 2015. Springer Cham Heidelberg New York Dordrecht London. – 118 p.

DOI: 10.1007/978-3-319-19599-5

Google Scholar

[2] Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungar T., Balogh L. Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion. 2010. Journal of Materials Science, Kluwer Academic Publishers, v. 45, p.4659.

DOI: 10.1007/s10853-010-4604-3

Google Scholar

[3] Roven H.J., Liu M., Murashkin M., Valiev R.Z., Kilmametov A.R., Ungar T., Balogh L. Nanostructures and microhardness in Al and Al-Mg alloys subjected to SPD. 2009. Materials Science Forum, № 604-604, p.179.

DOI: 10.4028/www.scientific.net/msf.604-605.179

Google Scholar

[4] Valiev R.Z., Aleksandrov I.V. Nanostructured materials obtained by severe plastic deformation. M.: Logos, 2000. 272 p.

Google Scholar

[5] Segal V.M., Reznikov V.I., Drobyshevsky F.E., Kopylov V.I. Plastic processing of metals by simple shift. Izv. Academy of Sciences of the USSR. Metals. 1981. №1, p.115.

Google Scholar

[6] Raab G.I. Development of methods of severe plastic deformation to obtain bulk ultrafine-grained materials. Bulletin of UGATU. 2004. №3(11). p.67.

Google Scholar

[7] Kolbasnikov NG, Mishin VV, Naumov AA, Zabrodin AV. Research into structure and rheological and relaxation properties of nanocrystalline beryllium at temperatures of hot rolling and research into stress relaxation kinetics in different sorts of beryllium. 2014, published in Rossiiskie Nanotekhnologii, 2014. v. 9. № 7-8. p.430.

DOI: 10.1134/s1995078014040090

Google Scholar

[8] Kolbasnikov NG, Mishin VV, Shamshurin AI, Zabrodin AV. Investigation of structure, rheological and relaxation properties, and stress relaxation kinetics in nanocrystalline beryllium at hot rolling temperatures. Nanotechnologies in Russia. 2014. v. 9. № 1-2. pp.65-72.

DOI: 10.1134/s1995078014010078

Google Scholar

[9] Kodjaspirov GE, Dobatkin SV, Rudskoi AI, Naumov AA. Production of ultrafine-grained sheet from ultralow-carbon steel by pack rolling. Metal Science and Heat Treatment. 2007. v. 49. № 11-12. p.561.

DOI: 10.1007/s11041-007-0103-9

Google Scholar

[10] Kolbasnikov NG, Mishin VV, Shamshurin AI, Zabrodin AV. Investigation of structure, rheological and relaxation properties, and stress relaxation kinetics in nanocrystalline beryllium at hot rolling temperatures. Nanotechnologies in Russia. 2014. v. 9. № 1-2. pp.65-72.

DOI: 10.1134/s1995078014010078

Google Scholar

[11] Kolbasnikov NG, Mishin VV, Shishov IA, Kistankin IS, Zabrodin AV. Development of nondestructive warm rolling schedules for nanocrystalline beryllium using mathematical simulation. Russian Metallurgy (Metally). 2014. № 10. p.785–792.

DOI: 10.1134/s0036029514100048

Google Scholar

[12] Kolbasnikov NG, Matveev MA, Zotov OG, Mishin VV, Mishnev PA, Nikonov SV. Hot plasticity of microalloyed pipe steel in continuous casting and hot rolling. Steel in Translation. 2014. v. 44. № 2. pp.149-155.

DOI: 10.3103/s0967091214020089

Google Scholar

[13] Panchenko OV, Ivanov SY, Naumov AA, Isupov FY, Popovich AA. Local Mechanical Properties Estimation of Friction Stir Welded Al-Mg-Si Joints. In The 28th International Ocean and Polar Engineering Conference 2018 Jul 30. International Society of Offshore and Polar Engineers.

DOI: 10.7449/2018/mst_2018_867_874

Google Scholar

[14] Behrens BA, Bouguecha A, Vucetic M, Peshekhodov I, Matthias T, Kolbasnikov N, Sokolov S, Ganin S. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings. InAIP Conference Proceedings 2016 Oct 19 (Vol. 1769, No. 1, p.130013). AIP Publishing.

DOI: 10.1063/1.4963532

Google Scholar

[15] Kol'tsova TS, Shakhov FM, Voznyakovskii AA, Lyashkov AI, Tolochko OV, Nasibulin AG, Rudskoi AI, Mikhailov VG. Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing. Technical Physics. 2014. v. 59. №11. pp.1626-1630.

DOI: 10.1134/s1063784214110139

Google Scholar

[16] Popovich AA, Masaylo DV, Sufiiarov VS, Borisov EV, Polozov IA, Bychenok VA, Kinzhagulov IY, Berkutov IV, Ashikhin DS, Il'inskii AV. A laser ultrasonic technique for studying the properties of products manufactured by additive technologies. Russian Journal of Nondestructive Testing. 2016. v. 52, №6, p.303–309.

DOI: 10.1134/s1061830916060097

Google Scholar

[17] Popovich AA, Sufiiarov VS, Polozov IA, Borisov EV. Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment. Key Engineering Materials. 2015 Jun 22.

DOI: 10.4028/www.scientific.net/kem.651-653.665

Google Scholar

[18] Popovich AA, Sufiiarov VS, Polozov IA, Borisov EV, Masaylo DV, Vopilovskiy PN, Sharonov AA, Tikhilov RM, Tsybin AV, Kovalenko AN, Bilyk SS. Use of additive techniques for preparing individual components of titanium alloy joint endoprostheses. Biomedical Engineering. 2016. v. 50 №3. pp.202-205.

DOI: 10.1007/s10527-016-9619-x

Google Scholar

[19] Grigoriev A, Polozov I, Sufiiarov V, Popovich A. In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting. Journal of Alloys and Compounds. 2017. № 704. pp.434-42.

DOI: 10.1016/j.jallcom.2017.02.086

Google Scholar

[20] Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA. Selective laser melting of heat-resistant Ni-based alloy. Non-ferrous metals. 2015. v.1. p.32-35Markushev M.V., Avtokratova E.V., Ilyasov R.R., Krymskiy S.V., Sitdikov O.Sh. Effect of aging and re-aging on nanostructuring and strengthening of severely deformed aluminum alloy. Materials Physics and Mechanics 33 (2017), pp.113-123.

DOI: 10.1063/1.5013814

Google Scholar

[21] Archakova Z.N., Balakhontsev G.A., Basova I.G. et al. Structure and properties of semi-finished products from aluminum alloys. M.: Metallurgy, (1984).

Google Scholar

[22] Mishetyan A.R., Filippov G.A., Morozov Yu.D., Chevskaya O.N. Deformational aging and properties of low-alloyed tube steels. Problems of ferrous metallurgy and materials science. 2011. №2. p.12–19.

Google Scholar