[1]
Bulk nanostructured materials with multifunctional properties / I. Sabirov, N.A. Enikeev, M.Yu. Murashkin, R.Z. Valiev. - 2015. Springer Cham Heidelberg New York Dordrecht London. – 118 p.
DOI: 10.1007/978-3-319-19599-5
Google Scholar
[2]
Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungar T., Balogh L. Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion. 2010. Journal of Materials Science, Kluwer Academic Publishers, v. 45, p.4659.
DOI: 10.1007/s10853-010-4604-3
Google Scholar
[3]
Roven H.J., Liu M., Murashkin M., Valiev R.Z., Kilmametov A.R., Ungar T., Balogh L. Nanostructures and microhardness in Al and Al-Mg alloys subjected to SPD. 2009. Materials Science Forum, № 604-604, p.179.
DOI: 10.4028/www.scientific.net/msf.604-605.179
Google Scholar
[4]
Valiev R.Z., Aleksandrov I.V. Nanostructured materials obtained by severe plastic deformation. M .: Logos, 2000. 272 p.
Google Scholar
[5]
Segal V.M., Reznikov V.I., Drobyshevsky F.E., Kopylov V.I. Plastic processing of metals by simple shift. Izv. Academy of Sciences of the USSR. Metals. 1981. №1, p.115.
Google Scholar
[6]
Raab G.I. Development of methods of severe plastic deformation to obtain bulk ultrafine-grained materials. Bulletin of UGATU. 2004. №3(11). p.67.
Google Scholar
[7]
Park Y.S., Chung K.H., Kim N.J. and Lavernia E.J. Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng. A 2004. 374. P.211.
DOI: 10.1016/j.msea.2004.02.013
Google Scholar
[8]
K. Lu, J. Lu. Superplastic extensibility of nanocrystalline copper at room temperature. Materials Science and Engineering. 2004. A 375–377, p.38.
Google Scholar
[9]
Zhenglin Chen, Zhidan Sun, Benoit Panicaud. Investigation of ductile damage during surface mechanical attrition treatment for TWIP steels using a dislocation density based viscoplasticity and damage models. Mechanics of Materials. 2019. 129, pp.279-289.
DOI: 10.1016/j.mechmat.2018.12.009
Google Scholar
[10]
Nana Li, Ning Wang. The effect of duplex Surface mechanical attrition and nitriding treatment on corrosion resistance of stainless steel 316L. Scientific Reports. 2018, 8, Article number: 8454.
DOI: 10.1038/s41598-018-26844-0
Google Scholar
[11]
E.N. Moskvichev, V.A. Skripnyak, V.V. Skripnyak, A.A. Kozulin, D.V. Lychagin. Influence of structure to plastic deformation resistance of aluminum alloy 1560 after groove pressing treatment. Letters on materials. 2016. 6 (2), pp.141-145.
DOI: 10.22226/2410-3535-2016-2-141-145
Google Scholar
[12]
Skotnikova, M.A., Tsvetkova, G.V., Krylov, N.A. Tribological properties of nanostructured diffusion layers of metal coatings. Key Engineering Materials. 2017 Jan 1;721: 446-450.
DOI: 10.4028/www.scientific.net/kem.721.446
Google Scholar
[13]
Skotnikova, M.A., Krylov, N.A., Popov, A.A. Structural and Phase Transformation in Metals at High-Speed Cutting and Tool Wear. Procedia Engineering. 2017 Jan 1; 777-782.
DOI: 10.1016/j.proeng.2017.10.668
Google Scholar
[14]
Skotnikova, M.A., Krylov, N.A. About the Nature of Dissipative Processes in Cutting Treatments of Titanium Vanes. Advances in Mechanical Engineering. Springer International Publishing. 2017. p.115 – 123.
DOI: 10.1007/978-3-319-53363-6_12
Google Scholar
[15]
Skotnikova, M.A., Krylov, N.A., Ivanov, E.K., Tsvetkova, G.V. Structural and phase transformation in material of steam turbines blades after high-speed mechanical effect (2016) Lecture Notes in Mechanical Engineering, none, pp.159-168.
DOI: 10.1007/978-3-319-29579-4_16
Google Scholar
[16]
Skotnikova, M.A. Martynov, M.A. Practical electron microscopy in mechanical engineering. Monograph. St. Petersburg: St. Petersburg Institute of mechanical engineering, 2005, C. 92.
Google Scholar
[17]
Archakova Z.N., Balakhontsev G.A., Basova I.G. et al. Structure and properties of semi-finished products from aluminum alloys. M .: Metallurgy, (1984).
Google Scholar
[18]
Umansky Y.S., Skakov Y.S., Ivanov L.N. and others. Crystallography, radiography and electron microscopy. Umansky, Y.S. M: Metallurgy, 1982. 632 p.
Google Scholar
[19]
Murtazina A.K., Lukmanov M.R., Kiekkuzhina L.U., Danilenko V.N. The effect of conditions of shift deformation under pressure on solid phase transformations in the Al – Cu system. Collection of papers. 310 p. Ufa: Bashkir State University, 2018, p.129.
Google Scholar
[20]
Burnyshev I.N., Valiakhmetova O.M., Lys V.F. Multicomponent diffusion saturation of cuprous alloys. Chemical physics and mesoscopy. 2010. v. 12, № 4 pp.519-525.
Google Scholar
[21]
Ditenberg I.A., Denisov K.I., Tyumentsev A.N. and others. A method of producing a multilayer composite based on copper and aluminum using combined machining. Patent RF 2539496 from 20.01.(2015).
Google Scholar
[22]
Skotnikova, M.A. Structural and phase transformations in titanium alloys. Metal Science and Heat Treatment. 2001. v.43 № (11-12), p.434.
Google Scholar
[23]
Parshin, A. M.; Skotnikova, M. A. Decomposition diagram and regime of heat treatment of double-phase titanium alloys. Metal Science and Heat Treatment. 1997. v. 39, № 7-8, pp.310-314.
DOI: 10.1007/bf02467129
Google Scholar
[24]
Skotnikova, M.A. A crystallographic model of vacancy-supersaturation of the high-temperature b.c.c. modification of titanium. Metal Science and Heat Treatment. 1998. v.40 № (3-4), pp.112-114.
DOI: 10.1007/bf02467470
Google Scholar
[25]
Skotnikova, M.A., Tsvetkova, G.V., Lanina, A.A., Krylov, N.A., Ivanova, G.V. Structural and Phase Structural and phase transformation in material of blades of steam turbines from titanium alloy after technological treatment. Lecture Notes in Control and Information Sciences. 2015. v.22 № 1, pp.93-101.
DOI: 10.1007/978-3-319-15684-2_12
Google Scholar