Effect of Severe Plastic Deformation on the Structure and Properties of the Aluminum Alloy System Al-Cu-Mg

Article Preview

Abstract:

The structure and properties of discs from cast coarse-grained D16 alloy have been investigated with the help of optical metallography and transmission electron microscopy, after the traditional heat treatment (HT) modes or subjected to high pressure torsion (HPT) under pressure in 6 GPa at room temperature. Standard HT modes included: Т4 (hardening 495°С + natural aging at room temperature for 5 days) and Т6 (hardening 495°С + artificial aging at 185°С for 10 hours). It is shown that after HT of alloy D16 according to modes T6 and Т4, the sizes of the structural elements, compared with the original, decreased by about 4,8 times and the microhardness increased by 1,6 times. It is shown that after one or ten rotates of HPT in D16 alloy the sizes of structural elements, in comparison with initial, decreased by 393 and 899 times, and microhardness increased by 2,4 and 2,9 times, respectively. Detection of hardening hard, brittle and high-alloy copper γ2- phases (Cu9Al4) indicates the passage in the HPT process of the decomposition of a supersaturated solid solution (dynamic aging) in the planes of a local shift.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-100

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bulk nanostructured materials with multifunctional properties / I. Sabirov, N.A. Enikeev, M.Yu. Murashkin, R.Z. Valiev. - 2015. Springer Cham Heidelberg New York Dordrecht London. – 118 p.

DOI: 10.1007/978-3-319-19599-5

Google Scholar

[2] Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungar T., Balogh L. Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion. 2010. Journal of Materials Science, Kluwer Academic Publishers, v. 45, p.4659.

DOI: 10.1007/s10853-010-4604-3

Google Scholar

[3] Roven H.J., Liu M., Murashkin M., Valiev R.Z., Kilmametov A.R., Ungar T., Balogh L. Nanostructures and microhardness in Al and Al-Mg alloys subjected to SPD. 2009. Materials Science Forum, № 604-604, p.179.

DOI: 10.4028/www.scientific.net/msf.604-605.179

Google Scholar

[4] Valiev R.Z., Aleksandrov I.V. Nanostructured materials obtained by severe plastic deformation. M .: Logos, 2000. 272 p.

Google Scholar

[5] Segal V.M., Reznikov V.I., Drobyshevsky F.E., Kopylov V.I. Plastic processing of metals by simple shift. Izv. Academy of Sciences of the USSR. Metals. 1981. №1, p.115.

Google Scholar

[6] Raab G.I. Development of methods of severe plastic deformation to obtain bulk ultrafine-grained materials. Bulletin of UGATU. 2004. №3(11). p.67.

Google Scholar

[7] Park Y.S., Chung K.H., Kim N.J. and Lavernia E.J. Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng. A 2004. 374. P.211.

DOI: 10.1016/j.msea.2004.02.013

Google Scholar

[8] K. Lu, J. Lu. Superplastic extensibility of nanocrystalline copper at room temperature. Materials Science and Engineering. 2004. A 375–377, p.38.

Google Scholar

[9] Zhenglin Chen, Zhidan Sun, Benoit Panicaud. Investigation of ductile damage during surface mechanical attrition treatment for TWIP steels using a dislocation density based viscoplasticity and damage models. Mechanics of Materials. 2019. 129, pp.279-289.

DOI: 10.1016/j.mechmat.2018.12.009

Google Scholar

[10] Nana Li, Ning Wang. The effect of duplex Surface mechanical attrition and nitriding treatment on corrosion resistance of stainless steel 316L. Scientific Reports. 2018, 8, Article number: 8454.

DOI: 10.1038/s41598-018-26844-0

Google Scholar

[11] E.N. Moskvichev, V.A. Skripnyak, V.V. Skripnyak, A.A. Kozulin, D.V. Lychagin. Influence of structure to plastic deformation resistance of aluminum alloy 1560 after groove pressing treatment. Letters on materials. 2016. 6 (2), pp.141-145.

DOI: 10.22226/2410-3535-2016-2-141-145

Google Scholar

[12] Skotnikova, M.A., Tsvetkova, G.V., Krylov, N.A. Tribological properties of nanostructured diffusion layers of metal coatings. Key Engineering Materials. 2017 Jan 1;721: 446-450.

DOI: 10.4028/www.scientific.net/kem.721.446

Google Scholar

[13] Skotnikova, M.A., Krylov, N.A., Popov, A.A. Structural and Phase Transformation in Metals at High-Speed Cutting and Tool Wear. Procedia Engineering. 2017 Jan 1; 777-782.

DOI: 10.1016/j.proeng.2017.10.668

Google Scholar

[14] Skotnikova, M.A., Krylov, N.A. About the Nature of Dissipative Processes in Cutting Treatments of Titanium Vanes. Advances in Mechanical Engineering. Springer International Publishing. 2017. p.115 – 123.

DOI: 10.1007/978-3-319-53363-6_12

Google Scholar

[15] Skotnikova, M.A., Krylov, N.A., Ivanov, E.K., Tsvetkova, G.V. Structural and phase transformation in material of steam turbines blades after high-speed mechanical effect (2016) Lecture Notes in Mechanical Engineering, none, pp.159-168.

DOI: 10.1007/978-3-319-29579-4_16

Google Scholar

[16] Skotnikova, M.A. Martynov, M.A. Practical electron microscopy in mechanical engineering. Monograph. St. Petersburg: St. Petersburg Institute of mechanical engineering, 2005, C. 92.

Google Scholar

[17] Archakova Z.N., Balakhontsev G.A., Basova I.G. et al. Structure and properties of semi-finished products from aluminum alloys. M .: Metallurgy, (1984).

Google Scholar

[18] Umansky Y.S., Skakov Y.S., Ivanov L.N. and others. Crystallography, radiography and electron microscopy. Umansky, Y.S. M: Metallurgy, 1982. 632 p.

Google Scholar

[19] Murtazina A.K., Lukmanov M.R., Kiekkuzhina L.U., Danilenko V.N. The effect of conditions of shift deformation under pressure on solid phase transformations in the Al – Cu system. Collection of papers. 310 p. Ufa: Bashkir State University, 2018, p.129.

Google Scholar

[20] Burnyshev I.N., Valiakhmetova O.M., Lys V.F. Multicomponent diffusion saturation of cuprous alloys. Chemical physics and mesoscopy. 2010. v. 12, № 4 pp.519-525.

Google Scholar

[21] Ditenberg I.A., Denisov K.I., Tyumentsev A.N. and others. A method of producing a multilayer composite based on copper and aluminum using combined machining. Patent RF 2539496 from 20.01.(2015).

Google Scholar

[22] Skotnikova, M.A. Structural and phase transformations in titanium alloys. Metal Science and Heat Treatment. 2001. v.43 № (11-12), p.434.

Google Scholar

[23] Parshin, A. M.; Skotnikova, M. A. Decomposition diagram and regime of heat treatment of double-phase titanium alloys. Metal Science and Heat Treatment. 1997. v. 39, № 7-8, pp.310-314.

DOI: 10.1007/bf02467129

Google Scholar

[24] Skotnikova, M.A. A crystallographic model of vacancy-supersaturation of the high-temperature b.c.c. modification of titanium. Metal Science and Heat Treatment. 1998. v.40 № (3-4), pp.112-114.

DOI: 10.1007/bf02467470

Google Scholar

[25] Skotnikova, M.A., Tsvetkova, G.V., Lanina, A.A., Krylov, N.A., Ivanova, G.V. Structural and Phase Structural and phase transformation in material of blades of steam turbines from titanium alloy after technological treatment. Lecture Notes in Control and Information Sciences. 2015. v.22 № 1, pp.93-101.

DOI: 10.1007/978-3-319-15684-2_12

Google Scholar