[1]
Sokolov D. F. et al. Influence of dynamic austenite decomposition on the microstructure and mechanical properties of pipe steel //Steel in Translation. – 2011. – Т. 41. – №. 4. – С. 351.
DOI: 10.3103/s096709121104022x
Google Scholar
[2]
Turichin G. A. et al. Effect of thermal and diffusion processes on formation of the structure of weld metal in laser welding of dissimilar materials //Metal science and heat treatment. – 2014. – Т. 55. – №. 9-10. – С. 569-574.
DOI: 10.1007/s11041-014-9671-7
Google Scholar
[3]
Smirnov L. A. et al. Modification of steel and alloys with rare-earth elements. Part 2 //Metallurgist. – 2016. – Т. 60. – №. 1-2. – С. 38-46.
Google Scholar
[4]
Popovich A.A., Sufiiarov V.S., Borisov E.V., Polozov I.A., Masaylo D.V., Grigoriev A.V., Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials, Russian Journal of Non-Ferrous Metals. 58 (2017) 389-395.
DOI: 10.3103/s1067821217040149
Google Scholar
[5]
Kodjaspirov G.E., Dobatkin S.V., Rudskoi A.I., Naumov A.A., Production of ultrafine-grained sheet from ultralow-carbon steel by pack rolling, Metal Science and Heat Treatment. 49 (2007).
DOI: 10.1007/s11041-007-0103-9
Google Scholar
[6]
Kolbasnikov N. G. et al. Investigation of structure, rheological and relaxation properties, and stress relaxation kinetics in nanocrystalline beryllium at hot rolling temperatures //Nanotechnologies in Russia. – 2014. – Т. 9. – №. 1-2. – С. 65-72.
DOI: 10.1134/s1995078014010078
Google Scholar
[7]
Tsemenko, V. N., Tolochko, O. V., Kol'tsova, T. S., Ganin, S. V., & Mikhailov, V. G. (2018). Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Science and Heat Treatment, 60(1-2), 24-31.
DOI: 10.1007/s11041-018-0235-0
Google Scholar
[8]
Mikhailov, V. G., Fritzsche, S., Hantelmann, C., & Ossenbrink, R. (2018). Aluminum foam sandwiches for lightweight structures. Metal Science and Heat Treatment, 60(1-2), 44-49.
DOI: 10.1007/s11041-018-0238-x
Google Scholar
[9]
Borovkov, A. I., Mamchits, D. V., Nemov, A. S., & Novokshenov, A. D. (2018). Problems of modeling and optimization of variable-hardness panels and structures made of layered composites. Mechanics of Solids, 53(1), 93-100.
DOI: 10.3103/s0025654418010119
Google Scholar
[10]
Gerasimov, V., Zarafutdinov, R., & Proskurina, O. (2018). C60 copper fullerite: Synthesis and properties. Materials Physics and Mechanics, 39(1), 56-60.
Google Scholar
[11]
Patent for invention RU 2543673 "Method for determining the mechanical properties of materials», G01N 3/08, (2015).
Google Scholar
[12]
GOST 10006-80 (Russian national standard 10006-80).
Google Scholar
[13]
Kononov, A. A., & Matveev, M. A. (2018). Formation of orientation {110} in surface layers of electrical anisotropic steel under hot rolling. Metal Science and Heat Treatment, 60(1-2), 55-60.
DOI: 10.1007/s11041-018-0240-3
Google Scholar
[14]
Kodzhaspirov, G. E., Kitaeva, D. A., Pazylov, S. T., & Rudaev, Y. I. (2018). On anisotropy of mechanical properties of aluminum alloys under high temperature deformation. Materials Physics and Mechanics,38(1), 69-75.
Google Scholar
[15]
Noronen, T., Fedotov, A., Rissanen, J., Gumenyuk, R., Butov, O., Chamorovskii, Y., Golant, K., Odnoblyudov, M., Filippov, V. (2018). Ultra-large mode area single frequency anisotropic MOPA with double clad yb-doped tapered fiber. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 10512, Article number 105121T.
DOI: 10.1117/12.2288942
Google Scholar
[16]
Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials and Design, 114, 441-449.
DOI: 10.1016/j.matdes.2016.10.075
Google Scholar
[17]
Patent for invention SU 1370520 "Method of testing friction pairs for wear resistance», G01N 3/56, (1988).
Google Scholar
[18]
Bai, L., Srikanth, N., Korznikova, E. A., Baimova, J. A., Dmitriev, S. V., & Zhou, K. (2017). Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear, 372-373, 12-20.
DOI: 10.1016/j.wear.2016.12.007
Google Scholar
[19]
Abushawashi, Y., Xiao, X., & Astakhov, V. (2017). Practical applications of the energy–triaxiality, state relationship in metal cutting. Machining Science and Technology, 21(1), 1-18.
DOI: 10.1080/10910344.2015.1133913
Google Scholar
[20]
Koltsova, T. S., Breki, A. D., Larionova, T. V., & Tolochko, O. V. (2018). Operational characteristics of the composite aluminum - carbon nanofibers. Materials Physics and Mechanics, 38(1), 11-15.
Google Scholar
[21]
Zhilyaev, A. P., Morozova, A., Cabrera, J. M., Kaibyshev, R., & Langdon, T. G. (2017). Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP. Journal of Materials Science, 52(1), 305-313.
DOI: 10.1007/s10853-016-0331-8
Google Scholar
[22]
Klochkov, Y., Gazizulina, A., Golovin, N., Glushkova, A., & Zh, S. (2018). Information model-based forecasting of technological process state. Paper presented at the 2017 International Conference on Infocom Technologies and Unmanned Systems: Trends and Future Directions, ICTUS 2017, 2018-January, 709-712.
DOI: 10.1109/ictus.2017.8286099
Google Scholar
[23]
Klochkov, Y., Gazizulina, A., & Golovin, N. (2016). Assessment of organization development speed based on the analysis of standards efficiency. Paper presented at the Proceedings - 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science, and Operations Management, SMRLO 2016, 530-532.
DOI: 10.1109/smrlo.2016.93
Google Scholar
[24]
Klochkov, Y., & Gazizulina, A. (2016). Application of the method of performance evaluation of the production proceb design using abociative design. Key Engineering Materials, 684, 448-452.
DOI: 10.4028/www.scientific.net/kem.684.448
Google Scholar
[25]
Klochkov, Y., & Gazizulina, A. (2016). Improvement of methodology of evaluation of efficiency of the etallurgical complex procebes development. Key Engineering Materials, 684, 453-460.
DOI: 10.4028/www.scientific.net/kem.684.453
Google Scholar
[26]
Zhao, Y., Liu, Z., Zhang, Y., Mentbayeva, A., Wang, X., Maximov, M. Y., Liu, B., Bakenov, Z., Yin, F. (2017). Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanoscale Research Letters, 12, Article number 459.
DOI: 10.1186/s11671-017-2226-2
Google Scholar
[27]
Kanninen, P., Luong, N. D., Sinh, L. H., Anoshkin, I. V., Tsapenko, A., Seppälä, J., Nasibulin, A.G., Kallio, T. (2016). Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 27(23). Article number 235403.
DOI: 10.1088/0957-4484/27/23/235403
Google Scholar
[28]
Emelyanov, O. A., & Shemet, M. V. (2016). Study of the mechanisms of barrier discharge development in the needle–plane system. Surface Engineering and Applied Electrochemistry, 52(6), 579-583.
DOI: 10.3103/s1068375516060065
Google Scholar
[29]
Baryshev G.K., Tutnov I.A., Biryukov A.P., Perspectives and principles of formulation of legal basis of diagnostic quality measurement and control of materials and products of nanostructure composites, MATEC Web of Conferences. – 2017. – Vol. 129. International Conference on Modern Trends in Manufacturing Technologies and Equipment 2017 (ICMTME 2017). – 02036.
DOI: 10.1051/matecconf/201712902036
Google Scholar
[30]
Arkhipov A. V. et al. Field-emission Properties of Ni-C Nanocomposite Films. – 2016. – Т. 8. – №. 2. – Art/ No. 02058.
Google Scholar
[31]
Andronov, A., Budylina, E., Shkitun, P., Gabdullin, P., Gnuchev, N., Kvashenkina, O., & Arkhipov, A. (2018). Characterization of thin carbon films capable of low-field electron emission. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 36(2), Article number 02C108.
DOI: 10.1116/1.5009906
Google Scholar
[32]
Bulat, L. P., Osvenskii, V. B., Parkhomenko, Y. N., Pshenay-Severin, D. A., & Sorokin, A. I. (2016). On improvement of thermoelectric properties of bulk bi-sb-te nanostructures. Journal of Electronic Materials, 45(3), 1648-1653.
DOI: 10.1007/s11664-015-4149-y
Google Scholar
[33]
Tavakkoli, M., Kallio, T., Reynaud, O., Nasibulin, A. G., Sainio, J., Jiang, H., Kauppinen, E.I., Laasonen, K. (2016). Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 4(14), 5216-5222.
DOI: 10.1039/c6ta01472k
Google Scholar
[34]
Frikha, M., Chaâri, N., Derbel, M. S., Elghoul, Y., Zinkovsky, A. V., & Chamari, K. (2017). Acute effect of stretching modalities and time-pressure on accuracy and consistency of throwing darts among 12-and 13-year-old schoolboys. Journal of Sports Medicine and Physical Fitness, 57(9), 1089-1097.
DOI: 10.23736/s0022-4707.16.06521-x
Google Scholar
[35]
Buchin, A., Rieubland, S., Häusser, M., Gutkin, B. S., & Roth, A. (2016). Inverse stochastic resonance in cerebellar purkinje cells. PLoS Computational Biology, 12(8), Article number e1005000.
DOI: 10.1371/journal.pcbi.1005000
Google Scholar
[36]
Krauchanka, M. Y., Krasnitckii, S. A., Gutkin, M. Y., Kolesnikova, A. L., Romanov, A. E., & Aifantis, E. C. (2018). Generation of circular prismatic dislocation loops in decahedral small particles. Scripta Materialia, 146, 77-81.
DOI: 10.1016/j.scriptamat.2017.11.006
Google Scholar
[37]
Porubov, A. V., Krivtsov, A. M., & Osokina, A. E. (2018). Two-dimensional waves in extended square lattice. International Journal of Non-Linear Mechanics, 99, 281-287.
DOI: 10.1016/j.ijnonlinmec.2017.12.008
Google Scholar
[38]
Nikitchenko, A. I., Azovtsev, A. V., & Pertsev, N. A. (2018). Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix. Journal of Physics Condensed Matter, 30(1).
DOI: 10.1088/1361-648x/aa9bd1
Google Scholar
[39]
Grashchenko, A. S., Kukushkin, S. A., Osipov, A. V., & Redkov, A. V. (2017). Nanoindentation of GaN/SiC thin films on silicon substrate. Journal of Physics and Chemistry of Solids, 102, 151-156.
DOI: 10.1016/j.jpcs.2016.11.004
Google Scholar
[40]
Patent for invention RU 2650731 "Method for studying the anisotropy of operational and technological properties of objects», G01N 27/02, (2018).
Google Scholar