[1]
Andorfer J, Auzinger D, Hirsch M, Hubmer G, Pichler R (1997) Controlling the Mechanical Properties of Hot Rolled Strip. Metall. Plant and Technol. Int.: 1-6.
DOI: 10.1016/s1474-6670(17)35897-4
Google Scholar
[2]
Shulkosky RA, Rosburg DL, Chapman JD, Barnes KR (2003) A Microstructural Evolution Model Used for Hot Strip Rolling. Mater. Sci. Technol. Conf.: 1-17.
Google Scholar
[3]
A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Stan 2000: Computer Model for Simulation of Steels Hot Rolling on Mill 2000 of Severstal // N. METAL 2015 - 24rd International Conference on Metallurgy and Materials. –2015. –P.183-189.
DOI: 10.4028/www.scientific.net/msf.854.183
Google Scholar
[4]
A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Computer Model STAN 2000 and its Use in Practice of Steels Hot Rolling on Mill 2000 of Severstal // Material Science Forum. – 2016. – V. 854. – P. 183−189.
DOI: 10.4028/www.scientific.net/msf.854.183
Google Scholar
[5]
Vasilyev, A.A., Sokolov, S.F., Kolbasnikov, N.G., Sokolov, D.F. Effect of alloying on the self-diffusion activation energy in γ-iron // Physics of the Solid State. – 2011. – V.53. – №11. – P. 2194-2200.
DOI: 10.1134/s1063783411110308
Google Scholar
[6]
A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Practical Use of Computer Model STAN 2000 for Improvement and Creation of Regimes for Hot Rolling of Steels on Severstal Mill 2000 // Material Science Forum. – 2017. – V. 879. – P. 2543−2548.
DOI: 10.4028/www.scientific.net/msf.879.2543
Google Scholar
[7]
Militzer M, Hawbolt EB, Meadowcroft TR (2000) Microstructural Model for Hot Strip Rolling of High-strength Low-alloy Steels. Metall. Mater. Trans. A 31:1247-1259.
DOI: 10.1007/s11661-000-0120-4
Google Scholar
[8]
Militzer M (2007) Computer Simulation of Microstructure Evolution in Low Carbon Sheet Steels. ISIJ Int. 47(1):1-15.
DOI: 10.2355/isijinternational.47.1
Google Scholar
[9]
Bezobrazov, Y.A., Kolbasnikov, N.G., Naumov, A.A. High-strength dual-phase steel structure evolution during hot rolling (2012) AIST Steel Properties and Applications Conference Proceedings - Combined with MS and T'12, Materials Science and Technology 2012, pp.257-265.
DOI: 10.3103/s0967091213070085
Google Scholar
[10]
Bezobrazov, Y.A., Kolbasnikov, N.G., Naumov, A.A. Tension-compression method in the simulation of multistage plastic deformation (2014) Steel in Translation, 44 (1), pp.71-79.
DOI: 10.3103/s0967091214010057
Google Scholar
[11]
Kolbasnikov, N.G., Mishin, V.V., Naumov, A.A., Zabrodin, A.V. Research into structure and rheological and relaxation properties of nanocrystalline beryllium at temperatures of hot rolling and research into stress relaxation kinetics in different sorts of beryllium(2014) Nanotechnologies in Russia, 9 (7-8), pp.430-440.
DOI: 10.1134/s1995078014040090
Google Scholar
[12]
Vasilyev A, Rudskoy A, Kolbasnikov N, Sokolov S, Sokolov D (2012) Physical and Mathematical Modeling of Austenite Microstructure Evolution Processes Developing in Line-pipe Steels under Hot Rolling. Mater. Sci. Forum 706-709: 2836-2841.
DOI: 10.4028/www.scientific.net/msf.706-709.2836
Google Scholar
[13]
Sokolov D, Ogoltcov A, Vasilyev A, Sokolov S, Kolbasnikov N (2013) Modeling of Microstructure and Mechanical Properties of Hot Rolled Steels. Mater. Sci. Forum 762:116-121.
DOI: 10.4028/www.scientific.net/msf.762.116
Google Scholar
[14]
D.F. Sokolov, A.A. Ogoltcov, A.A. Vasilyev, N.G. Kolbasnikov and S.F. Sokolov Modeling of Microstructure and Mechanical Properties of Hot Rolled Steels // Material Science Forum. – 2013. – V. 762. – P. 116−121.
DOI: 10.4028/www.scientific.net/msf.762.116
Google Scholar
[15]
Bradley JR, Aaronson HI (1981) Growth Kinetics of Grain Boundary Ferrite Allotriomorphs in Fe-C-X Alloys. Metall. Mater. Trans. A. 12:1729-1741.
DOI: 10.1007/bf02643755
Google Scholar
[16]
Samoilov A, Titovets YuF, Zolotorevsky NYu, Hribernig G (2003) CATRAN – A Multi-task Physical Model and Computer Program for the Prediction of the Microstructure of Steels According to an Arbitrary Cooling Schedule. Mater. Sci. Forum 426−432:1189-1194.
DOI: 10.4028/www.scientific.net/msf.426-432.1189
Google Scholar
[17]
Vasilyev, A.A., Sokolov, D.F., Kolbasnikov, N.G., Sokolov, S.F. Modeling of the γ → α transformation in steels // Physics of the Solid State. – 2012. – V.54. – №8. – P. 1669-1680.
DOI: 10.1134/s1063783412080318
Google Scholar
[18]
Information on http://www.thermocalc.com.
Google Scholar
[19]
Kirkaldy JS, Baganis EA (1978) Prediction of Multicomponent Equilibrium and Transformation Diagrams for Low Alloy Steels. Metall. Mater. Trans. A. 9:495-501.
Google Scholar