Formulas for the Calculation of Temperatures and Concentrations of Carbon Responsible to the Parar Equilibrium of the Main Phases in Medium Sheet Steels

Article Preview

Abstract:

With the help of the Thermo-Calc software package, arrays of calculated data were created for carbon concentrations in ferrite and austenite, corresponding to the para-equilibrium of these phases and their para-equilibrium with cementite, as well as for the corresponding temperatures A1 and A3. Marked arrays were obtained in wide temperature ranges for ranges of carbon concentrations and the most important substitution alloying elements (Mn; Si; Cr; Ni; Mo), covering the respective ranges for medium carbon and moderately alloyed steels. Analytical formulas were developed on the basis of the reference data arrays for calculating para-equilibrium concentrations of carbon in ferrite and austenite (depending on temperature and chemical composition), as well as temperatures A1 and A3 (depending on chemical composition), which allow to reproduce with high accuracy the results obtained using Thermo-Calc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-52

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Andorfer J, Auzinger D, Hirsch M, Hubmer G, Pichler R (1997) Controlling the Mechanical Properties of Hot Rolled Strip. Metall. Plant and Technol. Int.: 1-6.

DOI: 10.1016/s1474-6670(17)35897-4

Google Scholar

[2] Shulkosky RA, Rosburg DL, Chapman JD, Barnes KR (2003) A Microstructural Evolution Model Used for Hot Strip Rolling. Mater. Sci. Technol. Conf.: 1-17.

Google Scholar

[3] A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Stan 2000: Computer Model for Simulation of Steels Hot Rolling on Mill 2000 of Severstal // N. METAL 2015 - 24rd International Conference on Metallurgy and Materials. –2015. –P.183-189.

DOI: 10.4028/www.scientific.net/msf.854.183

Google Scholar

[4] A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Computer Model STAN 2000 and its Use in Practice of Steels Hot Rolling on Mill 2000 of Severstal // Material Science Forum. – 2016. – V. 854. – P. 183−189.

DOI: 10.4028/www.scientific.net/msf.854.183

Google Scholar

[5] Vasilyev, A.A., Sokolov, S.F., Kolbasnikov, N.G., Sokolov, D.F. Effect of alloying on the self-diffusion activation energy in γ-iron // Physics of the Solid State. – 2011. – V.53. – №11. – P. 2194-2200.

DOI: 10.1134/s1063783411110308

Google Scholar

[6] A. Ogoltcov, D. Sokolov, S. Sokolov, A. Vasilyev Practical Use of Computer Model STAN 2000 for Improvement and Creation of Regimes for Hot Rolling of Steels on Severstal Mill 2000 // Material Science Forum. – 2017. – V. 879. – P. 2543−2548.

DOI: 10.4028/www.scientific.net/msf.879.2543

Google Scholar

[7] Militzer M, Hawbolt EB, Meadowcroft TR (2000) Microstructural Model for Hot Strip Rolling of High-strength Low-alloy Steels. Metall. Mater. Trans. A 31:1247-1259.

DOI: 10.1007/s11661-000-0120-4

Google Scholar

[8] Militzer M (2007) Computer Simulation of Microstructure Evolution in Low Carbon Sheet Steels. ISIJ Int. 47(1):1-15.

DOI: 10.2355/isijinternational.47.1

Google Scholar

[9] Bezobrazov, Y.A., Kolbasnikov, N.G., Naumov, A.A. High-strength dual-phase steel structure evolution during hot rolling (2012) AIST Steel Properties and Applications Conference Proceedings - Combined with MS and T'12, Materials Science and Technology 2012, pp.257-265.

DOI: 10.3103/s0967091213070085

Google Scholar

[10] Bezobrazov, Y.A., Kolbasnikov, N.G., Naumov, A.A. Tension-compression method in the simulation of multistage plastic deformation (2014) Steel in Translation, 44 (1), pp.71-79.

DOI: 10.3103/s0967091214010057

Google Scholar

[11] Kolbasnikov, N.G., Mishin, V.V., Naumov, A.A., Zabrodin, A.V. Research into structure and rheological and relaxation properties of nanocrystalline beryllium at temperatures of hot rolling and research into stress relaxation kinetics in different sorts of beryllium(2014) Nanotechnologies in Russia, 9 (7-8), pp.430-440.

DOI: 10.1134/s1995078014040090

Google Scholar

[12] Vasilyev A, Rudskoy A, Kolbasnikov N, Sokolov S, Sokolov D (2012) Physical and Mathematical Modeling of Austenite Microstructure Evolution Processes Developing in Line-pipe Steels under Hot Rolling. Mater. Sci. Forum 706-709: 2836-2841.

DOI: 10.4028/www.scientific.net/msf.706-709.2836

Google Scholar

[13] Sokolov D, Ogoltcov A, Vasilyev A, Sokolov S, Kolbasnikov N (2013) Modeling of Microstructure and Mechanical Properties of Hot Rolled Steels. Mater. Sci. Forum 762:116-121.

DOI: 10.4028/www.scientific.net/msf.762.116

Google Scholar

[14] D.F. Sokolov, A.A. Ogoltcov, A.A. Vasilyev, N.G. Kolbasnikov and S.F. Sokolov Modeling of Microstructure and Mechanical Properties of Hot Rolled Steels // Material Science Forum. – 2013. – V. 762. – P. 116−121.

DOI: 10.4028/www.scientific.net/msf.762.116

Google Scholar

[15] Bradley JR, Aaronson HI (1981) Growth Kinetics of Grain Boundary Ferrite Allotriomorphs in Fe-C-X Alloys. Metall. Mater. Trans. A. 12:1729-1741.

DOI: 10.1007/bf02643755

Google Scholar

[16] Samoilov A, Titovets YuF, Zolotorevsky NYu, Hribernig G (2003) CATRAN – A Multi-task Physical Model and Computer Program for the Prediction of the Microstructure of Steels According to an Arbitrary Cooling Schedule. Mater. Sci. Forum 426−432:1189-1194.

DOI: 10.4028/www.scientific.net/msf.426-432.1189

Google Scholar

[17] Vasilyev, A.A., Sokolov, D.F., Kolbasnikov, N.G., Sokolov, S.F. Modeling of the γ → α transformation in steels // Physics of the Solid State. – 2012. – V.54. – №8. – P. 1669-1680.

DOI: 10.1134/s1063783412080318

Google Scholar

[18] Information on http://www.thermocalc.com.

Google Scholar

[19] Kirkaldy JS, Baganis EA (1978) Prediction of Multicomponent Equilibrium and Transformation Diagrams for Low Alloy Steels. Metall. Mater. Trans. A. 9:495-501.

Google Scholar