Investigation of the Hammer Forging Process of Large-Sized Turbine Blades of Stainless Steel

Article Preview

Abstract:

Investigations of the rheological properties and the formation of the structure of stainless steel were performed. A computer model of the process of hammer forging of the turbine blades made of stainless steel 1.3 m long in the package Deform-3D was developed , with the help of which the necessary coefficients and parameters are determined to ensure maximum convergence of the calculated and experimental process data. The obtained data were used to create a mathematical model for stamping a large-sized turbine blade made of stainless steel with a length of 2.1 m. Mathematical modeling of the processes of stamping and distorting of a large-sized blade in the software package Deform-3D has been performed. The influence of process parameters on the stress-strain state (SSS), forming, temperature field in the forging at various stages of stamping. Determined temperature and deformation modes of stamping, the need for additional heating and optimal forgings geometry by stamping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-158

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Banketov A.N., Bocharov Yu.A., Dobrinskiy N.S. i dr. Kuznechno-shtampovochnoe oborudovanie. – M.: Mashinostroenie, 1982. – 576 s.

Google Scholar

[2] Koltakova A.A., Danilenko V.Ya., Severin A.Yu. K voprosu opredeleniya massy padayushchih chastey molota pri shtampovke. // Vіsnik NTU «HPІ». – 2015. № 24 (1133). S. 39-51.

Google Scholar

[3] Shitarev I.L., Haymovich A.I. Issledovanie dinamicheskih parametrov formoobrazovaniya pri shtampovke na molotah so svobodno padayushchimi chastyami // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. – 2011. № 6 (30). S. 157-162.

Google Scholar

[4] Zhivov L.I., Ovchinnikov A.G., Skladchikov E.N. Kuznechno-shtampovochnoe oborudovanie. – M.: Izd-vo MGTU im N.E. Baumana, 2006. – 560 s.12. M. M. Sfantsikopoulos, L. G. Elefsiniotis A Study of Air Drop Hammer Dynamics. In: Tobias S.A. (eds) Proceedings of the Twentieth International Machine Tool Design and Research Conference. Palgrave Macmillan, London. 1980. pp.493-497.

DOI: 10.1007/978-1-349-05172-4_58

Google Scholar

[5] M. M. Sfantsikopoulos, L. G. Elefsiniotis A Study of Air Drop Hammer Dynamics. In: Tobias S.A. (eds) Proceedings of the Twentieth International Machine Tool Design and Research Conference. Palgrave Macmillan, London. 1980. pp.493-497.

DOI: 10.1007/978-1-349-05172-4_58

Google Scholar

[6] M. A. Bhutta, N. R. Chitkara. Dynamic Forging of Splines and Spur Gear Forms: A Modified Upper Bound Analysis that Includes the Effects of Inertia and Some Experiments. The International Journal of Advanced Manufacturing Technology. 2001. V 18. Issue 3, pp.176-192.

DOI: 10.1007/s001700170073

Google Scholar

[7] Sogrishin Yu.P. Shtampovka na vysokoskorostnyh molotah. / Yu.P. Sogrishin, L.G. Grishin, V.M. Vorobev. – M.: Mashinostroenie, 1978. – 68 s.

Google Scholar

[8] Semenov E.I., red. Kovka i shtampovka: spravochnik. V 4 t. T.1. Materialy i nagrev. Oborudovanie. Kovka. – M.: Mashinostroenie. 2010. – 717 s.

Google Scholar

[9] Bocharov Yu.A. Kuznechno-shtampovochnoe oborudovanie. – M.: Akademiya, 2008. – 480 s.

Google Scholar

[10] Lavrinenko V.Yu., Semenov E.I., Feofanova A.E. Raschet processov osadki na molotah pri deformirovanii baboy molota s napolnitelem. // Izvestiya vysshih uchebnyh zavedeniy. 2014. – № 1. S. 10-16.

Google Scholar

[11] M. A. Bhutta, N. R. Chitkara. Dynamic Forging of Splines and Spur Gear Forms: A Modified Upper Bound Analysis that Includes the Effects of Inertia and Some Experiments. Int J Adv Manuf Technol (2001) 18:176–192.

DOI: 10.1007/s001700170073

Google Scholar

[12] Lanskoy E.N., Pozdneev B.M. Sovershenstvovanie processov polugoryachey obemnoy shtampovki. – M.: NIImash, 1983. – 56 s.

Google Scholar

[13] A. Gontarz, Z. Pater, K. Drozdowski. Forging on hammer of rim forging from titanium alloy Ti6Al4V. Archives of metallurgy and materials. 2012, issue 4, Volume 57, pp.1239-1246.

DOI: 10.2478/v10172-012-0138-9

Google Scholar

[14] Kolbasnikov N.G., Matveev M.A., Mishin V.V., Mishnev P.A., Nikonov S.V. Causes of the hot ductility drops of steels. Russian Metallurgy (Metally). 2014 Sep 1;2014(9):711-7.

DOI: 10.1134/s0036029514090092

Google Scholar

[15] Kolbasnikov N.G., Matveev M.A., Zotov O.G., Mishin V.V., Mishnev P.A., Nikonov S.V. Hot plasticity of microalloyed pipe steel in continuous casting and hot rolling. Steel in Translation. 2014 Feb 1;44(2):149-55.

DOI: 10.3103/s0967091214020089

Google Scholar

[16] Kolbasnikov, N.G., Mishin, V.V., Shamshurin, A.I., Zabrodin, A.V. Investigation of structure, rheological and relaxation properties, and stress relaxation kinetics in nanocrystalline beryllium at hot rolling temperatures (2014) Nanotechnologies in Russia, 9 (1-2), pp.65-72.

DOI: 10.1134/s1995078014010078

Google Scholar

[17] Kolbasnikov, N.G., Matveev, M.A., Zotov, O.G., Mishin, V.V., Mishnev, P.A., Nikonov, S.V. Hot plasticity of microalloyed pipe steel in continuous casting and hot rolling (2014) Steel in Translation, 44 (2), pp.149-155.

DOI: 10.3103/s0967091214020089

Google Scholar

[18] Kolbasnikov Kolbasnikov, N.G., Bezobrazov, Y.A., Naumov, A.A. Structural evolution of high-strength dual-phase steel in hot rolling (2013) Steel in Translation, 43 (7), pp.455-459.

DOI: 10.3103/s0967091213070085

Google Scholar

[19] Sartkulvanich, T. Altan, F. Jasso, C. Rodriguez, Finite Element Modeling of Hard Roller Burnishing: An Analysis on the Effects of Process Parameters Upon Surface Finish and Residual Stresses, J. Manuf. Sci. Eng. 129 (2007) 705.

DOI: 10.1115/1.2738121

Google Scholar

[20] N.G. Kolbasnikov, V. V Mishin, I.A. Shishov, M.A. Matveev, A.M. Korchagin, Surface-crack formation in the manufacture of microalloyed steel pipe, Steel Transl. 46 (2016) 665–670.

DOI: 10.3103/s0967091216090035

Google Scholar

[21] V. V Mishin, I.A. Shishov, P.A. Glukhov, A. V Zabrodin, A.A. Semenov, D.A. Brylev, A.S. Anikin, Mathematical Simulation of Pressing X-ray Lenses from Nanocrystalline Beryllium, Met. Anikin. 2016 (2016) 966–971.

DOI: 10.1134/s0036029516100128

Google Scholar

[22] Golubev, I., Naumov, A., Michailov, V. Developing finite element model of the friction stir welding for temperature calculation (2014) METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings, pp.1242-1248.

Google Scholar

[23] N.G. Kolbasnikov, V. V. Mishin, I.A. Shishov, I.S. Kistankin, A. V. Zabrodin, Development of nondestructive warm rolling schedules for nanocrystalline beryllium using mathematical simulation, Russ. Metall. 2014 (2014) 785–792.

DOI: 10.1134/s0036029514100048

Google Scholar

[24] V.V. Mishin, Y.A. Bezobrazov, I.A. Shishov, M.A. Matveev, P.A. Glukhov, P.A. Mishnev, Non-destructive hot rolling schedules development for low Mn/S ratio 1008 steel, in: Met. 2014 - 23rd Int. Conf. Metall. Mater. Conf. Proc., (2014).

Google Scholar

[25] Haymovich I.N., Haymovich A.I. Proektirovanie i realizaciya sistemy avtomatizirovannogo proektirovaniya shtampovki kompressornyh lopatok iz titanovyh splavov // Izvestiya vuzov. Cvetnaya metallurgiya. 2015. № 2. S. 37-43.

Google Scholar

[26] Sorokin V. G., Volosnikova A. V., Vyatkin S. A. Marochnik staley i splavov. – M. : Mashinostroenie, 1989. – 640 s.

Google Scholar

[27] Maslenkov S. B. Zharoprochnye stali i splavy : spravochnoe izdanie. – M. : Metallurgiya, 1983. – 192 s.

Google Scholar

[28] Nermark V. E. Fizicheskie svoystva staley i splavov, primenyaemyh v energetike : spravochnik. – M. : Energomashinostroenie, 1976. – 240 s.

Google Scholar

[29] Radkevich M. M., Mamutov V. S., Fomin D. Yu. Konechno-elementnoe modelirovanie formoizmeneniya stalnoy zagotovki pri shtampovke pokovok udlinennoy formy v otkrytyh shtampah na KGShP // Nauchno-tekhnicheskie vedomosti SPbPU. 2013. № 3 (178). S. 244 – 251.

Google Scholar

[30] Vasilev D.I., Tylkin M.A., Teterin G.P. Osnovy proektirovaniya deformiruyushchego instrumenta. – M.: Vysshaya shkola, 1984. – 223 s.

Google Scholar