[1]
A Mentella, M Strano, R Gemignani, A new method for Feasibility Study and determination of the loading curves in the Rotary Draw-Bending Process, International Journal of Material Forming. 1 (2008) 165-168.
DOI: 10.1007/s12289-008-0017-0
Google Scholar
[2]
V.D. Maslov, Kon.A. Nikolenko, Kir.A. Nikolenko, V.D. Misyura, On the influence of anisotropy on tube stock bendining process by pushing, Proceedings of the scientific center of RAS. 15, №6, (2013) 278-284.
Google Scholar
[3]
I.P. Popov, V.D. Maslov, K.A. Nikolenko, V.D. Brusin, V.A. Mikheev, A.A. Khritin, Device for shaping steep elbows: Pat. RU 2294807 C1 (RF). (2007).
Google Scholar
[4]
V.D. Maslov, I.P. Popov, K.A. Nikolenko, A.D. Popov, Device for shaping steep elbows: Pat. RU 72649 U1 (RF). (2008).
Google Scholar
[5]
.P. Popov, V.D. Maslov, K.A. Nikolenko, Shaping of thin-walled steeply curved elbows in hard tool dies, Procuring production in mechanical engineering. 1 (2007) 23-26.
Google Scholar
[6]
V.D. Maslov, K.A. Nikolenko, Modeling of sheet punching processes in the ANSYS / LS-DYNA software package., Tutorial. Samara: Samar Publishing House. state aerospace. University, (2007).
Google Scholar
[7]
O. Yu. Davudov, V. G. Egorov, Yu. A. Nevstruev, Stamping of non-pass tees from pipe blanks in demountable matrices, Blank production in mechanical engineering. 6 (2005) 40-44.
Google Scholar
[8]
H. Li, H. Yang, Z.Y. Zhang, G.J. Li, N. Liu, T. Weloc, Multiple instability-constrained tube bending limits, Journal of Materials Processing Technology. 214 (2014) 445–455.
DOI: 10.1016/j.jmatprotec.2013.09.027
Google Scholar
[9]
M. Strano, S. Jirathearanat, S.G. Shr, T. Altan, Virtual process development in tube hydroforming, Journal of materials processing technology. 146 (2004), 130-136.
DOI: 10.1016/s0924-0136(03)00853-7
Google Scholar
[10]
H. Yang, Z.C. Sun, Y. Lin, Advanced plastic processing technology and research progress on tube forming, Journal of Plasticity Engineering. 8(2) (2001), 83-85.
Google Scholar
[11]
H. Yang, J. Yan, M. Zhan, et al. 3D numerical study on wrinkling characteristics in NC bending of aluminum alloy thin-walled tubes with large diameters under multi-die constraints, Computational Materials Science. 45(4) (2009), 1052-1067.
DOI: 10.1016/j.commatsci.2009.01.010
Google Scholar
[12]
Klochkov, Y., & Gazizulina, A. (2016). Improvement of methodology of evaluation of efficiency of the etallurgical complex procebes development. Key Engineering Materials, 684, 453-460.
DOI: 10.4028/www.scientific.net/kem.684.453
Google Scholar
[13]
Borovkov, A. I., Mamchits, D. V., Nemov, A. S., & Novokshenov, A. D. (2018). Problems of modeling and optimization of variable-hardness panels and structures made of layered composites. Mechanics of Solids, 53(1), 93-100.
DOI: 10.3103/S0025654418010119
Google Scholar
[14]
Teplukhina, I. V., Bogdanov, V. I., Zaitseva, O. Y., Shamrai, E. L., & Tsvetkov, A. S. (2018). Study of the metal properties and structure of a large shell made of 15Kh2MFA steel. Metallurgist, 61(9-10), 787-793.
DOI: 10.1007/s11015-018-0565-6
Google Scholar
[15]
Rudskoy, A. I., Belov, I. M., Gordeev, S. K., Barzinskii, O. V., & Kondrat'ev, S. Y. (2018). Carbon nanostructured implants for substituting bone defects and process of their production. Metal Science and Heat Treatment, 60(1-2), 18-23.
DOI: 10.1007/s11041-018-0234-1
Google Scholar
[16]
Tsemenko, V. N., Tolochko, O. V., Kol'tsova, T. S., Ganin, S. V., & Mikhailov, V. G. (2018). Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Science and Heat Treatment, 60(1-2), 24-31.
DOI: 10.1007/s11041-018-0235-0
Google Scholar
[17]
Kondrat'ev, S. Y., & Shvetsov, O. V. (2018). Technological and operational features of drill pipes from aluminum alloys 2024 and 1953. Metal Science and Heat Treatment, 60(1-2), 32-38.
DOI: 10.1007/s11041-018-0236-z
Google Scholar
[18]
Klochkov, Y. (2018). Technique of heater assembly process efficiency improvement on the basis of lean manufacture concept. Paper presented at the 2017 6th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2017, 2018-January, 71-77.
DOI: 10.1109/ICRITO.2017.8342402
Google Scholar
[19]
Kondrat'ev, S. Y., Morozova, Y. N., Golubev, Y. A., Hantelmann, C., Naumov, A. A., & Mikhailov, V. G. (2018). Microstructure and mechanical properties of welds of al – mg – si alloys after different modes of impulse friction stir welding. Metal Science and Heat Treatment, 59(11-12), 697-702.
DOI: 10.1007/s11041-018-0213-6
Google Scholar
[20]
Shabaev, V. M., Tupitsyn, I. I., & Yerokhin, V. A. (2018). QEDMOD: Fortran program for calculating the model lamb-shift operator. Computer Physics Communications, 223, 69.
DOI: 10.1016/j.cpc.2017.10.007
Google Scholar
[21]
Kitaeva, D. A., & Rudaev, Y. I. (2018). On macrokinetics under dynamic superplasticity. Materials Physics and Mechanics, 36(1), 131-136.
Google Scholar
[22]
Rudskoi, A. I., Bogatov, A. A., Nukhov, D. S., & Tolkushkin, A. O. (2018). On the development of the new technology of severe plastic deformation in metal forming. Materials Physics and Mechanics, 38(1), 76-81.
Google Scholar
[23]
Korolev, A. N., Lukin, A. Y., & Polishchuk, G. S. (2017). Use of information redundancy in optical digital measurement systems with 2D sensor. Measurement Techniques, 60(3), 242-247.
DOI: 10.1007/s11018-017-1180-9
Google Scholar