Determination of Boundary Parameters of Pipelines Elbows Blanking Elements Made from Titanium Alloy Ti-4Al-2Mn and Steel AISI 304

Article Preview

Abstract:

The results of computer simulation processing and determination of limiting degree of deformation by the Kolmogorov criterion are presented. The derivation of the dependence for the evaluation of the destruction of low-plastic materials at the edge is made at bend angle of 900

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-184

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A Mentella, M Strano, R Gemignani, A new method for Feasibility Study and determination of the loading curves in the Rotary Draw-Bending Process, International Journal of Material Forming. 1 (2008) 165-168.

DOI: 10.1007/s12289-008-0017-0

Google Scholar

[2] V.D. Maslov, Kon.A. Nikolenko, Kir.A. Nikolenko, V.D. Misyura, On the influence of anisotropy on tube stock bendining process by pushing, Proceedings of the scientific center of RAS. 15, №6, (2013) 278-284.

Google Scholar

[3] I.P. Popov, V.D. Maslov, K.A. Nikolenko, V.D. Brusin, V.A. Mikheev, A.A. Khritin, Device for shaping steep elbows: Pat. RU 2294807 C1 (RF). (2007).

Google Scholar

[4] V.D. Maslov, I.P. Popov, K.A. Nikolenko, A.D. Popov, Device for shaping steep elbows: Pat. RU 72649 U1 (RF). (2008).

Google Scholar

[5] .P. Popov, V.D. Maslov, K.A. Nikolenko, Shaping of thin-walled steeply curved elbows in hard tool dies, Procuring production in mechanical engineering. 1 (2007) 23-26.

Google Scholar

[6] V.D. Maslov, K.A. Nikolenko, Modeling of sheet punching processes in the ANSYS / LS-DYNA software package., Tutorial. Samara: Samar Publishing House. state aerospace. University, (2007).

Google Scholar

[7] O. Yu. Davudov, V. G. Egorov, Yu. A. Nevstruev, Stamping of non-pass tees from pipe blanks in demountable matrices, Blank production in mechanical engineering. 6 (2005) 40-44.

Google Scholar

[8] H. Li, H. Yang, Z.Y. Zhang, G.J. Li, N. Liu, T. Weloc, Multiple instability-constrained tube bending limits, Journal of Materials Processing Technology. 214 (2014) 445–455.

DOI: 10.1016/j.jmatprotec.2013.09.027

Google Scholar

[9] M. Strano, S. Jirathearanat, S.G. Shr, T. Altan, Virtual process development in tube hydroforming, Journal of materials processing technology. 146 (2004), 130-136.

DOI: 10.1016/s0924-0136(03)00853-7

Google Scholar

[10] H. Yang, Z.C. Sun, Y. Lin, Advanced plastic processing technology and research progress on tube forming, Journal of Plasticity Engineering. 8(2) (2001), 83-85.

Google Scholar

[11] H. Yang, J. Yan, M. Zhan, et al. 3D numerical study on wrinkling characteristics in NC bending of aluminum alloy thin-walled tubes with large diameters under multi-die constraints, Computational Materials Science. 45(4) (2009), 1052-1067.

DOI: 10.1016/j.commatsci.2009.01.010

Google Scholar

[12] Klochkov, Y., & Gazizulina, A. (2016). Improvement of methodology of evaluation of efficiency of the etallurgical complex procebes development. Key Engineering Materials, 684, 453-460.

DOI: 10.4028/www.scientific.net/kem.684.453

Google Scholar

[13] Borovkov, A. I., Mamchits, D. V., Nemov, A. S., & Novokshenov, A. D. (2018). Problems of modeling and optimization of variable-hardness panels and structures made of layered composites. Mechanics of Solids, 53(1), 93-100.

DOI: 10.3103/S0025654418010119

Google Scholar

[14] Teplukhina, I. V., Bogdanov, V. I., Zaitseva, O. Y., Shamrai, E. L., & Tsvetkov, A. S. (2018). Study of the metal properties and structure of a large shell made of 15Kh2MFA steel. Metallurgist, 61(9-10), 787-793.

DOI: 10.1007/s11015-018-0565-6

Google Scholar

[15] Rudskoy, A. I., Belov, I. M., Gordeev, S. K., Barzinskii, O. V., & Kondrat'ev, S. Y. (2018). Carbon nanostructured implants for substituting bone defects and process of their production. Metal Science and Heat Treatment, 60(1-2), 18-23.

DOI: 10.1007/s11041-018-0234-1

Google Scholar

[16] Tsemenko, V. N., Tolochko, O. V., Kol'tsova, T. S., Ganin, S. V., & Mikhailov, V. G. (2018). Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Science and Heat Treatment, 60(1-2), 24-31.

DOI: 10.1007/s11041-018-0235-0

Google Scholar

[17] Kondrat'ev, S. Y., & Shvetsov, O. V. (2018). Technological and operational features of drill pipes from aluminum alloys 2024 and 1953. Metal Science and Heat Treatment, 60(1-2), 32-38.

DOI: 10.1007/s11041-018-0236-z

Google Scholar

[18] Klochkov, Y. (2018). Technique of heater assembly process efficiency improvement on the basis of lean manufacture concept. Paper presented at the 2017 6th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2017, 2018-January, 71-77.

DOI: 10.1109/ICRITO.2017.8342402

Google Scholar

[19] Kondrat'ev, S. Y., Morozova, Y. N., Golubev, Y. A., Hantelmann, C., Naumov, A. A., & Mikhailov, V. G. (2018). Microstructure and mechanical properties of welds of al – mg – si alloys after different modes of impulse friction stir welding. Metal Science and Heat Treatment, 59(11-12), 697-702.

DOI: 10.1007/s11041-018-0213-6

Google Scholar

[20] Shabaev, V. M., Tupitsyn, I. I., & Yerokhin, V. A. (2018). QEDMOD: Fortran program for calculating the model lamb-shift operator. Computer Physics Communications, 223, 69.

DOI: 10.1016/j.cpc.2017.10.007

Google Scholar

[21] Kitaeva, D. A., & Rudaev, Y. I. (2018). On macrokinetics under dynamic superplasticity. Materials Physics and Mechanics, 36(1), 131-136.

Google Scholar

[22] Rudskoi, A. I., Bogatov, A. A., Nukhov, D. S., & Tolkushkin, A. O. (2018). On the development of the new technology of severe plastic deformation in metal forming. Materials Physics and Mechanics, 38(1), 76-81.

Google Scholar

[23] Korolev, A. N., Lukin, A. Y., & Polishchuk, G. S. (2017). Use of information redundancy in optical digital measurement systems with 2D sensor. Measurement Techniques, 60(3), 242-247.

DOI: 10.1007/s11018-017-1180-9

Google Scholar