Hot Axial Rotary Forging of Flanges Standard EN 1092

Article Preview

Abstract:

The paper considers the technology of manufacturing flange parts using local methods of metal forming. Various technologies of manufacturing of ring blanks for the subsequent rotary forging of flanges are offered and investigated. On the basis of computer simulation, the main dimensions of the workpiece have been chosen, providing the best forming parts and the parameters of the technology mode. The results of experimental studies have shown that this technology is possible to manufacture flanges according to EN 1092 using the process of axial rotary forging with cylindrical rolls. The use of local methods of deformation of metals allows expanding the possibilities of technological processes at lower power equipment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.T. Kruk, V.F. Fedorkevich. Shtampovka pokovok flantsev truboprovodov na tyazhelykh krivoshipnykh goryacheshtampovochnykh pressakh. Zhurnal «Kuznechno-shtampovochnoe proizvodstvo», 1999, № 6, str. 35 – 40.

Google Scholar

[2] Tekhnologicheskie vozmozhnosti ob''emnoj shtampovki obkatyvaniem na sferodvizhnompressovatele. Klassifikatsiya protsessov. N. P. Ageev, Zhurnal «Metalloobrabotka» № 5, 2001 g., str. 36 - 44.

Google Scholar

[3] Gurinovich V.A., Balandin Yu.A., Gurchenko P.S., Kolpakov A.S., Zharkov E.V., Isaevich L.A., Sidorenko M.I. Tortsovaya raskatka detalej flantsevogo tipa. Zhurnal «Avtomobil'naya promyshlennost'» 2005. №9.

Google Scholar

[4] Shtampovka obkatyvaniem kol'tsevykh i flantsevykh zagotovok / Surkov V. A., Koryakin N. A., Galimov Je. R. // Zagotovitel'nye proizvodstva v mashinostroenii. - 2005, № 7, s. 27-29.

Google Scholar

[5] Surkov V.A., Koryakin N.A. Tekhnologicheskie protsessy formoobrazovaniya zagotovok detalej gazoturbinnogo dvigatelya metodom shtampovki obkatyvaniem. Zhurnal «Zagotovitel'nye proizvodstva v mashinostroenii», 2008, № 7, s.21-28.

Google Scholar

[6] NowakJ, MadejL, ZiolkiewiczS, PlewinskiA, GrosmanF, PietrzykM (2008) Recentdevelopmentinorbitalforgingtechnology. Int J Mater Form 1 (Suppl 1):387–390.

Google Scholar

[7] Han X, Hua L (2009) Comparison between cold rotary forging and conventional forging. J MechSciTechnol 23:2668–2678.

DOI: 10.1007/s12206-009-0624-9

Google Scholar

[8] Extended application range for orbital forming technology. Schmid Press Release, HeinrichSchmid Machines, Tools & Dies Ltd., Jona, Switzerland, May (2005).

Google Scholar

[9] Plancak ME, Vilotic DZ, Stefanovic MC, Movrin DZ, Kacmarcik IZ (2012) Orbital forging— a possible alternative for bulk metal forming. J Trends Dev Mach AssocTechnol 16(1):35–38.

Google Scholar

[10] EN 1092-1. Flanges: https://www.pipefittingweb.com/flange/pdf/en-flange.pdf (accessed 13.12.2018).

Google Scholar

[11] Montoya I, Santos MT, Pérez I, González B, Puigjaner JF (2008) Kinematic and sensitivity analysis of rotary forging process by means of a simulation model. Int J Mater Form 1 (Suppl 1): 383–386.

DOI: 10.1007/s12289-008-0075-3

Google Scholar

[12] Liu G, Yuan S, Zhang M (2001) Numerical analysis on rotary forging mechanism of a flange. J Mater SciTechnol 17(1):129–131.

Google Scholar

[13] Wang GC, Zhao GQ (2002) Simulation and analysis of rotary forging a ring workpiece using finite element method. Finite Elem Anal Des 38(12):1151–1164.

DOI: 10.1016/s0168-874x(02)00056-2

Google Scholar

[14] Munshi M, Shah K, Cho H, Altan T (2005) Finite element analysis of orbital forming used in spindle/inner ring assembly. In: 8th ICTP 2005—international conference on technology of plasticity, Verona, 9–13 Oct (2005).

Google Scholar

[15] Kocańda A (2015) Development of orbital forging processes by using Marciniak rocking-die solutions. In: Tekkaya AE, Homberg W, Brosius A (eds) 60 excellent inventions in metal forming. Springer-Verlag, Berlin, Heidelberg, p.319–324.

DOI: 10.1007/978-3-662-46312-3_49

Google Scholar

[16] Evgrafov A., (ed.). Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering, Springer International Publishing Switzerland, 2016, pp.175-181, DOI 10.1007/978-3-319-29579-4.

Google Scholar

[17] Kolbasnikov NG, Bezobrazov YA, Naumov AA. Structural evolution of high-strength dual-phase steel in hot rolling. Steel in Translation. 2013 Jul 1;43(7):455-9.

DOI: 10.3103/s0967091213070085

Google Scholar

[18] Kolbasnikov NG, Matveev MA, Zotov OG, Mishin VV, Mishnev PA, Nikonov SV. Hot platicity of microalloyed pipe steel in continuous casting and hot rolling. Steel in Translation. 2014 Feb 1; 44(2):149-55.

DOI: 10.3103/s0967091214020089

Google Scholar

[19] Sokolov D.F, Ogoltcov A.A, Vasilyev A.A, Kolbasnikov N.G, Sokolov S.F. Modeling of microstructure and mechanical properties of hot rolled steels. InMaterials Science Forum 2013 (Vol. 762, pp.116-121). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/msf.762.116

Google Scholar

[20] Kolbasnikov NG, Matveev MA, Mishnev PA. Effect of structure factor on high-temperature ductility of pipe steels. Metal Science and Heat Treatment. 2016 May 1;58(1-2):51-7.

DOI: 10.1007/s11041-016-9964-0

Google Scholar

[21] Rudskoi, A.I., Zolotov, A.M., Parshikov, R.A. Severe plastic deformation influence on engineering plasticity of copper. Materials Physics and Mechanics. 2018. Т. 38. № 1. С. 64-68.

Google Scholar

[22] Parshikov, R.A., Rudskoy, A.I., Zolotov, A.M., Tolochko, O.V. Analysis of specimen plastic flow features during severe plastic deformation. (2016) Reviews on Advanced Materials Science, 45 (1-2), pp.67-75.

Google Scholar