[1]
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, Producing hip implants of titanium alloys by additive manufacturing, Int. J. Bioprinting. 24 (2016) 187-193.
DOI: 10.18063/ijb.2016.02.004
Google Scholar
[2]
O. Klimova-Korsmik, G. Turichin, E. Zemlyakov, K. Babkin, P. Petrovsky, A. Travyanov, Technology of High-speed Direct Laser Deposition from Ni-based Superalloys, Phy. Proc.83 (2016) 716-722.
DOI: 10.1016/j.phpro.2016.08.073
Google Scholar
[3]
S. Kovalenko P. Pechenko R. Makhmudova, Investigation of Friction Coefficient of Various Polymers Used in Rapid Prototyping Technologies with Different Settings of 3D Printing, Tribology in Ind. 39 (2017) 519-526.
DOI: 10.24874/ti.2017.39.04.11
Google Scholar
[4]
I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer Science and Business Media, New York, (2010).
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[5]
B. Wendel, D. Rietzel, F. Kuhnlein, R. Feulner, G. Hulder, E. Schmachtenberg, Additive processing of polymers, Macr. Mater. Eng. 293 (2008) 799-809.
DOI: 10.1002/mame.200800121
Google Scholar
[6]
S. Berretta, O. Ghita, K.E. Evans, Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders, Eur. Polym. J. 59 (2014), 218-229.
DOI: 10.1016/j.eurpolymj.2014.08.004
Google Scholar
[7]
S. Dupin, O. Lame, C. Barrès, J.Y. Charmeau, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering, Eur. Polym. J. 48, (2012) 1611-1621.
DOI: 10.1016/j.eurpolymj.2012.06.007
Google Scholar
[8]
S. Berretta, K.E. Evans, O. Ghita, Processability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS), Eur. Polym. J. 68 (2015) 243-266.
DOI: 10.1016/j.eurpolymj.2015.04.003
Google Scholar
[9]
O. Ghita, E. James, R. Davies , S. Berretta, B. Singh, S. Flint, K.E. Evans, High Temperature Laser Sintering (HT-LS), An investigation into mechanical properties and shrinkage characteristics of Poly (Ether Ketone) (PEK) structures. Materials and Design. 61 (2014) 124-132.
DOI: 10.1016/j.matdes.2014.04.035
Google Scholar
[10]
A.D. Breki, A.L. Didenko, V. V Kudryavtsev, E.S. Vasilyeva, O. V Tolochko, A.G. Kolmakov, A.E. Gvozdev, D.A. Provotorov, N.E. Starikov, Y.A. Fadin, Synthesis and dry sliding behavior of composite coating with (R–OOO)FT polyimide matrix and tungsten disulfide nanoparticle filler, Inorg. Mater. Appl. Res. 8 (2017) 32–36.
DOI: 10.1134/s2075113317010063
Google Scholar
[11]
A.D. Breki, A.L. Didenko, V. V Kudryavtsev, E.S. Vasilyeva, O. V Tolochko, A.E. Gvozdev, N.N. Sergeyev, D.A. Provotorov, N.E. Starikov, Y.A. Fadin, A.G. Kolmakov, Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics, Inorg. Mater. Appl. Res. 8 (2017) 56–59.
DOI: 10.1134/s2075113317010075
Google Scholar
[12]
A.D. Breki, A.L. Didenko, V. V Kudryavtsev, E.S. Vasilyeva, O. V Tolochko, A.G. Kolmakov, Y.A. Fadin, N.N. Sergeyev, A.E. Gvozdev, N.E. Starikov, D.A. Provotorov, Synthesis and tribotechnical properties of composite coatings with PM–DADPE polyimide matrix and fillers of tungsten dichalcogenide nanoparticles upon dry sliding friction, Inorg. Mater. Appl. Res. 7 (2016) 542–546.
DOI: 10.1134/s2075113316040067
Google Scholar
[13]
E.N. Popova, a. L. Didenko, V.M. Svetlichnyi, V.E. Yudin, E. a. Kaidash, E.S. Vasil'eva, O. V. Tolochko, D.W. Li, D. Kim, Synthesis and properties of films of a polyimide filled with ferromagnetic nanoparticles, Russ. J. Appl. Chem. 79 (2006) 1321–1324.
DOI: 10.1134/s1070427206080209
Google Scholar
[14]
M.I. Bessonov, M.M. Koton, V.V. Kudryavtsev, L.A. Laius, Polyimides-Thermally Stable Polymers, Plenum Publishing Corp., New York. (1987).
DOI: 10.1007/978-1-4615-7634-1
Google Scholar
[15]
V.E. Yudin, A.G. Kalbin, T.K. Meleshko, A.I. Grigor'ev, G.N. Gubanova, N.N. Bogorad, Y.N. Panov, O.F. Pozdnyakov, B.P. Redkov, A.O. Pozdnyakov, V.V. Kudryavtsev, Features of the crystal structure of the polyimide derived from 3,3'-diaminobenzophenone and 3,3',4,4'-benzophenonetetracarboxylic dianhydride, Russ. J. Appl. Chem.. 74 (2001) 1183-1189.
DOI: 10.1023/a:1013035405512
Google Scholar
[16]
V.E. Yudin, J.U. Otaigbe, L.T. Drzal, and V.M. Svetlichnyi, Novel semicrystalline thermoplastic r-bapb type polyimide matrix reinforced by graphite nanoplatelets and carbon nanoparticles, Adv. Comp. Lett.. 15 (2006) 137-143.
DOI: 10.1177/096369350601500403
Google Scholar
[17]
T.A. Kostereva, YU.N. Panov, A.L. Didenko, I.G. Silinskaya, V.M. Svetlichnyi, V.E. Yudin, and V.V. Kudryavtsev: Сontrolling the viscosity of melts of partially crystalline polyimides used for preparing carbon-reinforced plastics, Russ. J. Appl. Chem., 77 (2004) 1355-1358.
DOI: 10.1007/s11167-005-0029-1
Google Scholar
[18]
V.E. Yudin, V.M. Svetlichnyi, Carbon Plastics Based on Thermoplastic Polyimide Binders Modified with Nanoparticles, Polym. Sci., C, 58 (2016) 16–25.
DOI: 10.1134/s1811238216010124
Google Scholar
[19]
I. Gibson, D.P. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid prototyping journal, 3 (1997) 129-136.
DOI: 10.1108/13552549710191836
Google Scholar