[1]
P.-C.Tsai, Y.-R. Jeng, J.-T. Lee, I. Stachiv, P. Sittner, Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites, Diamond & Related Materials 74 (2017) 197–204.
DOI: 10.1016/j.diamond.2017.03.012
Google Scholar
[2]
W.M. Daoush, B.-K. Lim, C.-B. Mo, D.-H. Nam, S.-H. Hong, Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process, Materials Science & Engineering A 513–514 (2009) 247–253.
DOI: 10.1016/j.msea.2009.01.073
Google Scholar
[3]
K. Rajkumar, S. Aravindan, Tribological studies on microwave sintered copper–carbon nanotube composites, Wear 270 (2011) 613–621.
DOI: 10.1016/j.wear.2011.01.017
Google Scholar
[4]
Kyung Tae Kim, Seung Il Cha, Seong Hyeon Hong, Soon Hyung Hong, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science & Engineering A 430 (2006) 27–33.
DOI: 10.1016/j.msea.2006.04.085
Google Scholar
[5]
A.K. Shukla, Niraj Nayan, S.V.S.N. Murty, S.C. Sharma, P.Chandran, S.R. Bakshi, K.M. George, Processing of copper–carbon nanotube composites by vacuum hot pressing technique, Materials Science & Engineering A 560 (2013) 365–371.
DOI: 10.1016/j.msea.2012.09.080
Google Scholar
[6]
E.S. Vasil'eva, S.V. Kidalov, V.V. Sokolov, G.G. Klimov, , Puguang Ji. Properties of copper-detonation nanodiamond composites obtained by spray drying, Technical Physics 39 (2013) 137–139.
DOI: 10.1134/s1063785013010410
Google Scholar
[7]
D.W. Lee, O.Tolochko, C.J. Choi, and B.K. Kim, Aluminum Oxide Dispersion Strengthened Copper Produced by Thermo-Chemical Method, Powder Metallurgy 45 (2002) 267-270.
DOI: 10.1179/003258902225002532
Google Scholar
[8]
B. Duan ,Yu Zhou, D. Wang, Y.Zhao, Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering, Journal of Alloys and Compounds 771 (2019) 498-504.
DOI: 10.1016/j.jallcom.2018.08.315
Google Scholar
[9]
A.I. Rudskoy, T.S. Kol'Tsova, T.V. Larionova, A. N. Smirnov, E.S. Vasil'Eva, A.G. Nasibulin, Gas-phase synthesis and control of structure and thickness of graphene layers on copper substrates, Metal Science and Heat Treatment 58 (2016) 40-45.
DOI: 10.1007/s11041-016-9962-2
Google Scholar
[10]
L.I. Nasibulina, T.S. Koltsova, T. Joentakanen, A.G. Nasibulin, O.V. Tolochko, J.E. M. Malm, M.J. Karppinen, E.I. Kauppinen, Direct synthesis of carbon nanofibers on the surface of copper powder, Carbon 48 (2010) 4556–4577.
DOI: 10.1016/j.carbon.2010.07.028
Google Scholar
[11]
T.S. Kol'tsova, T.V. Larionova, N.N. Shusharina, O.V. Tolochko, Synthesis of carbon nanofibers on copper particles, Technical Physics 60 (8) (2105) 1214–1219.
DOI: 10.1134/s1063784215080125
Google Scholar
[12]
T. Larionova, T. Koltsova, Y. Fadin, O. Tolochko, Friction and wear of copper-carbon nanofibers compact composites prepared by chemical vapor deposition, Wear 319 (2014) 118-122.
DOI: 10.1016/j.wear.2014.07.020
Google Scholar
[13]
Bobrynina, E., Alkhalaf, A.A., Shamshurin, A., Tolochko, O., Michailov, V. Synthesis of Fe-ZrO2 composite powders by thermochemical method, Key Engineering Materials 721 (2017) 285-289.
DOI: 10.4028/www.scientific.net/kem.721.285
Google Scholar
[14]
Ch. Guiderdoni, C. Estourne`s, A. Peigney, A. Weibel, V. Turq, Ch. Laurent, The preparation of double-walled carbon nanotube/Cu composites by spark plasma sintering, and their hardness and friction properties, Carbon 49 (2011) 4535 – 4543.
DOI: 10.1016/j.carbon.2011.06.063
Google Scholar
[15]
X. Gao, H. Yue, E. Guo, S. Zhang, L. Yao, X. Lin, B. Wang, E. Guan, Tribological properties of copper matrix composites reinforced with homogeneously dispersed grapheme nanosheets, Journal of Materials Science & Technology (2018) https://doi.org/10.1016/j.jmst.2018.02.010.
DOI: 10.1016/j.jmst.2018.02.010
Google Scholar