[1]
Turichin G, Kuznetsov M., Klimova-Korsmik O., et al. Laser-Arc hybrid welding perspective ultra-high strength steels: influence of the chemical composition of weld metal on microstructure and mechanical properties // Procedia CIRP. 2018 Jan 1; 74: 752-6.
DOI: 10.1016/j.procir.2018.08.017
Google Scholar
[2]
Sokolov M., Salminen A., Khlusova E.I., et al. Testing of new materials and computer aided optimization of laser beam welding of high-strength steels // Physics Procedia. 2015 Jan 1; 78: 255-64.
DOI: 10.1016/j.phpro.2015.11.036
Google Scholar
[3]
Turichin G., Kuznetsov M., Tsibulskiy I., et al. Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology // Physics Procedia. 2017 Dec 31; 89: 156-63.
DOI: 10.1016/j.phpro.2017.08.005
Google Scholar
[4]
Turichin G., Kuznetsov M., Sokolov M., et al. Hybrid laser arc welding of X80 steel: influence of welding speed and preheating on the microstructure and mechanical properties // Physics Procedia. 2015 Jan 1; 78: 35-44.
DOI: 10.1016/j.phpro.2015.11.015
Google Scholar
[5]
Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W., A review on selective laser sintering/ melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties//Progress in Materials Science. 2015. vol. 74. pp.401-477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[6]
Safin, D.Y., Future Engineering of Russia // Sbornik trudov Vseross. Conf. molodich uchenich I specialistov. Moscow, 28 sentyabrya – 01 octyabrya 2011. MGTU im. N.E. Baumana. 2011. 332 p.
Google Scholar
[7]
SLM Solutions focuses on aviation repair // Metal Powder Report. 2015. vol. 70. iss. 2. 94 p.
DOI: 10.1016/j.mprp.2015.01.012
Google Scholar
[8]
Turichin G.A., Klimova O.G., Zemlyakov E.V., et al. Technological Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy // Physics Procedia. 2015. №78. pp.397-406.
DOI: 10.1016/j.phpro.2015.11.054
Google Scholar
[9]
Thompson S.M., Bian L., Shamsaei N., et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics // Additive Manufacturing. 2015. №8: 36-62.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[10]
Zhang, K., Wang, S.J., Liu, W.J., et al. Characterization of stainless steel parts by Laser Metal Deposition Shaping // Materials and Design. 2014. №55. pp.104-119.
DOI: 10.1016/j.matdes.2013.09.006
Google Scholar
[11]
Gharbi M., Peyre P., Gorny C., et al. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy // Journal of Material Processing Technology. 2013. №213. pp.791-800.
DOI: 10.1016/j.jmatprotec.2012.11.015
Google Scholar
[12]
Mazumder, J., Song, L.J. Advances in direct metal deposition, in: ASME 2013 International Mechanical Engineering Congress and Exposition, Article number V02AT02A012, (2013).
Google Scholar
[13]
Gasper A.N.D., Catchpole-Smith, S., Clare, A.T. In-situ synthesis of titanium aluminides by direct metal deposition // Journal of Material Processing Technology. 2017. №239. pp.230-239.
DOI: 10.1016/j.jmatprotec.2016.08.031
Google Scholar
[14]
Shalnova S.A., Klimova-Korsmik O.G., Sklyar M.O. Influence of the Roughness on the Mechanical Properties of Ti-6Al-4V Products Prepared by Direct Laser Deposition Technology // InSolid State Phenomena. 2018. vol. 284. pp.312-318.
DOI: 10.4028/www.scientific.net/ssp.284.312
Google Scholar
[15]
Sklyar M.O., Klimova-Korsmik O.G., Turichin G.A., et al. Influence of Technological Parameters of Direct Laser Deposition Process on the Structure and Properties of Deposited Products from Alloy Ti-6Al-4V // InSolid State Phenomena. 2018. vol. 284. pp.306-311.
DOI: 10.4028/www.scientific.net/ssp.284.306
Google Scholar
[16]
Sklyar M.O., Klimova-Korsmik O.G., Cheverikin V.V. Formation Structure and Properties of Parts from Titanium Alloys Produced by Direct Laser Deposition // Solid State Phenomena. 2017. Mar 1; 265.
DOI: 10.4028/www.scientific.net/ssp.265.535
Google Scholar
[17]
Radziwon A., Bilberg A., Bogers M., et al. The smart factory: exploring adaptive and flexible manufacturing solutions // Processing Engineering. 2014. №69. pp.1184-1190.
DOI: 10.1016/j.proeng.2014.03.108
Google Scholar
[18]
Turichin G.A., Zemlyakov E.V., Klimova O.G., et al. Direct laser deposition – perspective additive technology for aircraft engine // Svarka I diagnostika. 2015. №3. pp.54-57.
Google Scholar
[19]
Guo, P., Zou, B., Huang, C.Z., et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition // Journal of Material Processing Technology. 2017. №240. pp.12-22.
DOI: 10.1016/j.jmatprotec.2016.09.005
Google Scholar
[20]
Sklyar M.O., Turichin G.A., Klimova O.G., et al. Microstructure of 316L stainless steel components produced by direct laser deposition // Steel, in Translation. 2016. №46. pp.883-887.
DOI: 10.3103/s096709121612010x
Google Scholar
[21]
Luzhnov Yu.M., Aleksandrov V.D. Bases of triboengineering: edited by Yu.M. Luzhnov. / Moscow: MADI. 2013. 136 p.
Google Scholar