[1]
O.I. Grinin, E.A. Valdaytseva, I.T. Lasota, Y.B. Pevzner, V.V. Somonov, Technology of Selective Laser Melting Formation of Heterogeneous Powder Structures, Key Engineering Materials. (2017).
DOI: 10.4028/www.scientific.net/kem.736.91
Google Scholar
[2]
V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetnye Metally. (2016).
DOI: 10.17580/tsm.2016.01.14
Google Scholar
[3]
R.S. Korsmik, G.A. Turichin, O.G. Klimova-Korsmik, E.V. Alekseeva, R.S. Novikov, Development of laser powder cladding technology for restoration of heat-resistant nickel alloys turbine blades, Journal of Physics. 1109 (2018) 12-23.
DOI: 10.1088/1742-6596/1109/1/012023
Google Scholar
[4]
L. Pang et al., Direct laser fabrication of nickel alloy samples, International Journal of Machine Tools & Manufacture. (2005) 1288-1294.
DOI: 10.1016/j.ijmachtools.2005.01.014
Google Scholar
[5]
R.S. Korsmik, G.A. Turichin, O.G. Klimova-Korsmik, E.V. Alekseeva, R.S. Novikov, Development of laser powder cladding technology for restoration of heat-resistant nickel alloys turbine blades, Journal of Physics. 1109 (2018).
DOI: 10.1088/1742-6596/1109/1/012023
Google Scholar
[6]
L.A. Magerramova, G.A. Turichin, Y.A. Nozhnitsky, O.G. Klimova-Korsmik, B.E. Vasiliev, M.E. Volkov, A.V. Salnikov, Peculiarities of additive technologies application in the production of gas turbine engine parts, Journal of Physics. 1109 (2018).
DOI: 10.1088/1742-6596/1109/1/012051
Google Scholar
[7]
V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting, Materials & Design. (2017).
DOI: 10.1016/j.matdes.2017.05.065
Google Scholar
[8]
Luke N. Carter, Moataz M. Attallah, Roger C. Reed, Laser Powder Bed Fabrication of Nickel-Base Superalloys: Influence of Parameters; Characterization, Quantification and Mitigation of Cracking, Superalloys 2012: 12th International Sumposium on Superalloys. (2012).
DOI: 10.7449/2012/superalloys_2012_577_586
Google Scholar
[9]
S. Kou, Solidification and Liquation Cracking Issues in Welding, Applying Material Science and Engineering. (2003).
Google Scholar
[10]
M. Rashkovets, A. Nikulina, G.A. Turichin, O.G. Klimova-Korsmik, M.O. Sklyar, Microstructure and Phase Composition of Ni-Based Alloy Obtained by High-Speed Direct Laser Deposition, Journal of Materials Engineering and Performance. (2018).
DOI: 10.1007/s11665-018-3722-y
Google Scholar
[11]
Information on https://www.esabna.com/euweb/mig_handbook/592mig10_7.htm, accessed on the 8th November at 3 p.m.
Google Scholar
[12]
Information on http://www.phasetrans.msm.cam.ac.uk/2003/Superalloys/superalloys.html, accessed on the 22nd November at 3 p.m.
Google Scholar
[13]
Information on http://www.welding-consultant.com/WeldCracks.pdf, accessed on 22nd October at 3 p.m.
Google Scholar