[1]
Grinin O.I, Valdaytseva E.A, Lasota I.T, Pevzner Y, Somonov V.V., Technology of Selective Laser Melting Formation of Heterogeneous Powder Structures, Key Engineering Materials. 736 (2017) 91-94.
DOI: 10.4028/www.scientific.net/kem.736.91
Google Scholar
[2]
G.A. Turichin, O.G. Klimova, E.V. Zemlyakov, K.D. Babkin, D. Yu. Kolodyazhnyy, F.A. Shamray, A.Ya. Travyanov, P.V. Petrovskiy, Technological Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy, Physics Procedia. 78 (2015) 397-406.
DOI: 10.1016/j.phpro.2015.11.054
Google Scholar
[3]
G. Turichin, O. Klimova-Korsmik, Theory and Technology of Direct Laser Deposition, Additive Manufacturing of High-performance Metals and Alloys. (2018) 71-88.
DOI: 10.5772/intechopen.76860
Google Scholar
[4]
Klimova-Korsmik O, Turichin G, Zemlyakov E, Babkin K, Petrovsky P, Travyanov A., Technology of High-speed Direct Laser Deposition from Ni-based Super alloys, Physics Procedia. 83 (2016) 716-722.
DOI: 10.1016/j.phpro.2016.08.073
Google Scholar
[5]
S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, J. Mazumder, Microstructural evolution of AISI 4340 steel during Direct Metal Deposition process, Materials Science and Engineering: A. 528 (2011) 2309-2318.
DOI: 10.1016/j.msea.2010.11.036
Google Scholar
[6]
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components - Process, structure and properties, Progress in Materials Science. 92 (2017) 112-224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[7]
S.M. Thompson, L Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing. 8 (2015) 36-62.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[8]
Qiang Bai, Yong Bai, 20 - Arctic Pipelines, Subsea Pipeline Design, Analysis, and Installation. (2014) 465-485.
DOI: 10.1016/b978-0-12-386888-6.00020-1
Google Scholar
[9]
S.V. Panin, P.O. Maruschak, I.V. Vlasov, A.S. Syromyatnikova, A.M. Bolshakov, F. Berto, O. Prentkovskis, B.B. Ovechkin, Effect of Operating Degradation in Arctic Conditions on Physical and Mechanical Properties of 09Mn2Si Pipeline Steel, Procedia Engineering. 178 (2017) 597-603.
DOI: 10.1016/j.proeng.2017.01.117
Google Scholar
[10]
Ki Jong Kim, Jong Hwan Lee, Dae Kyeom Park, Bo Gyeong Jung, Xu Han, Jeom Kee Paik, An experimental and numerical study on nonlinear impact responses of steel-plated structures in an Arctic environment, International Journal of Impact Engineering. 93 (2016) 99-115.
DOI: 10.1016/j.ijimpeng.2016.02.013
Google Scholar
[11]
Jia-BaoYan, J.Y. Richard Liew, Min-Hong Zhang, Jun-Yan Wang, Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment, Materials & Design. 61 (2014) 150-159.
DOI: 10.1016/j.matdes.2014.04.057
Google Scholar
[12]
A. Radziwon, A. Bilberg, M. Bogers, E. Madsen, The smart factory: exploring adaptive and flexible manufacturing solutions, Procedia Engineering. 69 (2014) 1184-1190.
DOI: 10.1016/j.proeng.2014.03.108
Google Scholar
[13]
Sklyar M.O., Turichin G.A., Klimova O.G., Zotov O.G., Topalov I.K., Microstructure of 316L stainless steel components produced by direct laser deposition, Steel in Translation. 46 (2016) 883-887.
DOI: 10.3103/s096709121612010x
Google Scholar
[14]
Vildanov A.M, Babkin K.D, Zemlyakov E.V, Gushchina M.O., The effects of beam oscillation on the quality of laser deposited metal parts, In Journal of Physics: Conference Series. 1109 (2018) 012059.
DOI: 10.1088/1742-6596/1109/1/012059
Google Scholar
[15]
Turichin G.A, Somonov V.V, Babkin K.D, Zemlyakov E.V, Klimova O.G., High-Speed Direct Laser Deposition: Technology, Equipment and Materials. 125 (2016) 012009.
DOI: 10.1088/1757-899x/125/1/012009
Google Scholar
[16]
Turichin G.A, Klimova O.G, Zemlyakov E.V, Babkin K.D, Kolodyazhnyy D.Y, Shamray F.A, Travyanov A.Y, Petrovskiy P.V., Technological aspects of high speed direct laser deposition based on heterophase powder metallurgy, Physics Procedia. 78 (2015) 397-406.
DOI: 10.1016/j.phpro.2015.11.054
Google Scholar
[17]
Chiradeep Ghosh, Clodualdo Aranas Jr., John J. Jonas, Dynamic transformation of deformed austenite at temperatures above the Ae3, Progress in Materials Science. 82 (2016) 151-233.
DOI: 10.1016/j.pmatsci.2016.04.004
Google Scholar
[18]
M. Olasolo, P. Uranga, J. M. Rodriguez-Ibabe, B. López, Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel, Materials Science and Engineering: A. 528 (2011) 2559-2569.
DOI: 10.1016/j.msea.2010.11.078
Google Scholar
[19]
A.K. Nath, S. Sarkar, Chapter 11-Laser Transformation Hardening of Steel, Advances in Laser Materials Processing (Second Edition). (2018) 257-298.
DOI: 10.1016/b978-0-08-101252-9.00011-x
Google Scholar
[20]
J.J.S. Dilip, G.D. Janaki Ram, Thomas L. Starr, Brent Stucker, Selective laser melting of HY100 steel: Process parameters, microstructure and mechanical properties, Additive Manufacturing. 13 (2017) 49-60.
DOI: 10.1016/j.addma.2016.11.003
Google Scholar
[21]
Haitham El Kadiri, Liang Wang, Mark F. Horstemeyer, Reza S. Yassar, John T. Berry, Sergio Felicelli, Paul T. Wang, Phase transformations in low-alloy steel laser deposits, Materials Science and Engineering: A. 494 (2008) 10-20.
DOI: 10.1016/j.msea.2007.12.011
Google Scholar
[22]
G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, I. Manna, Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel, Surface and Coatings Technology. 258 (2014) 1108-1118.
DOI: 10.1016/j.surfcoat.2014.07.023
Google Scholar
[23]
A.E. Isakov, V.A. Matveeva, M.A. Chukaeva, Development of Chemosorbent Based on Metallic Waste for Cleaning Mine Water From Molybdenum, Journal of Ecological Engeneering. 19 (2018) 42-47.
DOI: 10.12911/22998993/79454
Google Scholar